42 resultados para interferogram sampling
em University of Queensland eSpace - Australia
Resumo:
An epidemiologic survey among four administrative villages around Poyang Lake, in Jiangxi Province, China (two experimental and two controls) is being conducted to determine if bovine infections are responsible for the persistence of human schistosomiasis transmission on Yangtze River marshlands. A previously published paper presented the experimental design and baseline data for humans and bovines. This paper presents basic data for the four villages using remote sensing, and baseline data for snails that includes geographic information systems and remote sensing technology to classify the areas of bovine grazing ranges and habitats suitable for snails. A new method for sampling Oncomelania snails in China is used to determine the distribution, density, and infection rates of snails throughout the grazing ranges from season to season over a four-year period. Hypothetically, treating bovines should reduce infection rates in snails to below the critical number necessary to maintain infections in man and bovines.
Resumo:
Blood sampling is an essential technique in many herpetological studies. This paper describes a quick and humane technique to collect blood samples from three species of Australian chelid turtles ( Order Pleurodira): Chelodina expansa, Elseya latisternum, and Emydura macquarii signata.
Resumo:
Radar target identification based on complex natural resonances is sometimes achieved by convolving a linear time-domain filter with a received target signature. The filter is constructed from measured or pre-calculated target resonances. The performance of the target identification procedure is degraded if the difference between the sampling rates of the target signature and the filter is ignored. The problem is investigated for the natural extinction pulse technique (E-pulse) for the case of identifying stick models of aircraft.
Resumo:
The aim of this study was to determine the most informative sampling time(s) providing a precise prediction of tacrolimus area under the concentration-time curve (AUC). Fifty-four concentration-time profiles of tacrolimus from 31 adult liver transplant recipients were analyzed. Each profile contained 5 tacrolimus whole-blood concentrations (predose and 1, 2, 4, and 6 or 8 hours postdose), measured using liquid chromatography-tandem mass spectrometry. The concentration at 6 hours was interpolated for each profile, and 54 values of AUC(0-6) were calculated using the trapezoidal rule. The best sampling times were then determined using limited sampling strategies and sensitivity analysis. Linear mixed-effects modeling was performed to estimate regression coefficients of equations incorporating each concentration-time point (C0, C1, C2, C4, interpolated C5, and interpolated C6) as a predictor of AUC(0-6). Predictive performance was evaluated by assessment of the mean error (ME) and root mean square error (RMSE). Limited sampling strategy (LSS) equations with C2, C4, and C5 provided similar results for prediction of AUC(0-6) (R-2 = 0.869, 0.844, and 0.832, respectively). These 3 time points were superior to C0 in the prediction of AUC. The ME was similar for all time points; the RMSE was smallest for C2, C4, and C5. The highest sensitivity index was determined to be 4.9 hours postdose at steady state, suggesting that this time point provides the most information about the AUC(0-12). The results from limited sampling strategies and sensitivity analysis supported the use of a single blood sample at 5 hours postdose as a predictor of both AUC(0-6) and AUC(0-12). A jackknife procedure was used to evaluate the predictive performance of the model, and this demonstrated that collecting a sample at 5 hours after dosing could be considered as the optimal sampling time for predicting AUC(0-6).
Resumo:
Fine-scale spatial genetic structure (SGS) in natural tree populations is largely a result of restricted pollen and seed dispersal. Understanding the link between limitations to dispersal in gene vectors and SGS is of key interest to biologists and the availability of highly variable molecular markers has facilitated fine-scale analysis of populations. However, estimation of SGS may depend strongly on the type of genetic marker and sampling strategy (of both loci and individuals). To explore sampling limits, we created a model population with simulated distributions of dominant and codominant alleles, resulting from natural regeneration with restricted gene flow. SGS estimates from subsamples (simulating collection and analysis with amplified fragment length polymorphism (AFLP) and microsatellite markers) were correlated with the 'real' estimate (from the full model population). For both marker types, sampling ranges were evident, with lower limits below which estimation was poorly correlated and upper limits above which sampling became inefficient. Lower limits (correlation of 0.9) were 100 individuals, 10 loci for microsatellites and 150 individuals, 100 loci for AFLPs. Upper limits were 200 individuals, five loci for microsatellites and 200 individuals, 100 loci for AFLPs. The limits indicated by simulation were compared with data sets from real species. Instances where sampling effort had been either insufficient or inefficient were identified. The model results should form practical boundaries for studies aiming to detect SGS. However, greater sample sizes will be required in cases where SGS is weaker than for our simulated population, for example, in species with effective pollen/seed dispersal mechanisms.
Resumo:
The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K-SV) when air-side resistance dominates and increase with K-SV when sampler-side resistance dominates.
Resumo:
We consider the problem of estimating P(Yi + (...) + Y-n > x) by importance sampling when the Yi are i.i.d. and heavy-tailed. The idea is to exploit the cross-entropy method as a toot for choosing good parameters in the importance sampling distribution; in doing so, we use the asymptotic description that given P(Y-1 + (...) + Y-n > x), n - 1 of the Yi have distribution F and one the conditional distribution of Y given Y > x. We show in some specific parametric examples (Pareto and Weibull) how this leads to precise answers which, as demonstrated numerically, are close to being variance minimal within the parametric class under consideration. Related problems for M/G/l and GI/G/l queues are also discussed.
Resumo:
Water-sampler equilibrium partitioning coefficients and aqueous boundary layer mass transfer coefficients for atrazine, diuron, hexazionone and fluometuron onto C18 and SDB-RPS Empore disk-based aquatic passive samplers have been determined experimentally under a laminar flow regime (Re = 5400). The method involved accelerating the time to equilibrium of the samplers by exposing them to three water concentrations, decreasing stepwise to 50% and then 25% of the original concentration. Assuming first-order Fickian kinetics across a rate-limiting aqueous boundary layer, both parameters are determined computationally by unconstrained nonlinear optimization. In addition, a method of estimation of mass transfer coefficients-therefore sampling rates-using the dimensionless Sherwood correlation developed for laminar flow over a flat plate is applied. For each of the herbicides, this correlation is validated to within 40% of the experimental data. The study demonstrates that for trace concentrations (sub 0.1 mu g/L) and these flow conditions, a naked Empore disk performs well as an integrative sampler over short deployments (up to 7 days) for the range of polar herbicides investigated. The SDB-RPS disk allows a longer integrative period than the C18 disk due to its higher sorbent mass and/or its more polar sorbent chemistry. This work also suggests that for certain passive sampler designs, empirical estimation of sampling rates may be possible using correlations that have been available in the chemical engineering literature for some time.
Resumo:
The number of studies of tropical tree species that use molecular tools is increasing, most of which collect leaf tissue for genomic DNA extraction. In tropical trees the canopy is not only frequently inaccessible, but also, once reached, the leaf tissue is often heavily defended against herbivory by high concentrations of anti-predation compounds, which may inhibit downstream applications, particularly PCR. Cambium tissue, accessed directly from the tree trunk at ground level, offers a readily accessible resource that is less hampered by the presence of defensive chemicals than leaf tissue. Here we describe a simple method for obtaining tissue from the cambial zone for DNA extraction and test the applicability of the method in a range of tropical tree species. The method was used successfully to extract DNA from 11 species in nine families. A subset of the DNA extracts was tested in more detail and proved to be highly suitable for AFLP analysis.
Resumo:
This is the protocol for a review and there is no abstract. The objectives are as follows: To evaluate the effectiveness and risks of fetal scalp lactate sampling in the assessment of fetal wellbeing during labour, compared with no testing or alternative additional testing (pH, fetal pulse oximetry, etc) for women exhibiting a non-reassuring cardiotocograph trace. A secondary objective of the review is to determine whether effectiveness and risks of intrapartum fetal scalp lactate sampling is influenced by the following: stage of labour; gestation less than 37 completed weeks, greater than or equal to 37 completed weeks; additional tests performed to confirm the presence or absence of fetal acidemia during labour.
Resumo:
There have been a number of developments in the need, design and use of passive air samplers (PAS) for persistent organic pollutants (POPs). This article is the first in a Special Issue of the journal to review these developments and some of the data arising from them. We explain the need and benefit of developing PAS for POPs, the different approaches that can be used, and highlight future developments and needs. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Predatory insects and spiders are key elements of integrated pest management (IPM) programmes in agricultural crops such as cotton. Management decisions in IPM programmes should to be based on a reliable and efficient method for counting both predators and pests. Knowledge of the temporal constraints that influence sampling is required because arthropod abundance estimates are likely to vary over a growing season and within a day. Few studies have adequately quantified this effect using the beat sheet, a potentially important sampling method. We compared the commonly used methods of suction and visual sampling to the beat sheet, with reference to an absolute cage clamp method for determining the abundance of various arthropod taxa over 5 weeks. There were significantly more entomophagous arthropods recorded using the beat sheet and cage clamp methods than by using suction or visual sampling, and these differences were more pronounced as the plants grew. In a second trial, relative estimates of entomophagous and phytophagous arthropod abundance were made using beat sheet samples collected over a day. Beat sheet estimates of the abundance of only eight of the 43 taxa examined were found to vary significantly over a day. Beat sheet sampling is recommended in further studies of arthropod abundance in cotton, but researchers and pest management advisors should bear in mind the time of season and time of day effects.