197 resultados para interdisciplinary dialog

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of professional disciplines working together to address the critical social and health issues facing society today cannot be overstated. Policy makers, service providers and researchers have long been calling for greater interdisciplinary collaboration. Despite this there has been little systemic analysis of the constraints involved in such collaboration. Far too often disciplines continue to work in silos. This paper aims to analyse the barriers to interdisciplinary collaboration through a case study of the relationship between social work and public health. These two disciplines have a lot more in common than might first appear. There is real potential for social work and public health to work together and enhance each other's efforts to address their common goal of greater social equality. However, this will require a genuine commitment from both disciplines to develop a shared political analysis, common language and a framework for action, which utilises their respective strengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As humans expand into space communities will form. These have already begun to form in small ways, such as long-duration missions on the International Space Station and the space shuttle, and small-scale tourist excursions into space. Social, behavioural and communications data emerging from such existing communities in space suggest that the physically-bounded, work-oriented and traditionally male-dominated nature of these extremely remote groups present specific problems for the resident astronauts, groups of them viewed as ‘communities’, and their associated groups who remain on Earth, including mission controllers, management and astronauts’ families. Notionally feminine group attributes such as adaptive competence, social adaptation skills and social sensitivity will be crucial to the viability of space communities and in the absence of gender equity, ‘staying in touch’ by means of ‘news from home’ becomes more important than ever. A template of news and media forms and technologies is suggested to service those needs and enhance the social viability of future terraforming activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a great deal of discussion about the need for interdisciplinary, applied research to service the needs of the knowledge economy and to solve the broader complex theoretical problems of the twenty-first century. This is known as 'Mode 2' knowledge production. Yet, university research higher degree programs continue to be largely disciplinary-based. While there has been a rise in the number of research students working on industry-related, applied projects, very few research students gain exposure to interdisciplinary research processes. This paper explores several examples of interdisciplinary doctoral programs based in North America and Australia and seeks to draw upon examples of undergraduate interdisciplinary learning and epistemology. In reviewing this theoretical work and a number of strategies implemented at an Australian university, the paper begins to imagine an interdisciplinary doctoral pedagogy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempting to solve the complex problems of the 21st century requires research graduates that have developed a sophisticated array of interdisciplinary teamwork and communication skills. Although universities, governments, industry and the professions have emphasised the need to break down disciplinary silos in order to produce graduates, who can respond more effectively to the needs of the knowledge economy, much of this work has centred on undergraduate programs. While there are some research higher degree students who choose to work on interdisciplinary research topics, very little has been done to develop interdisciplinary research education systematically. This paper explores the educational opportunities and dilemmas involved in developing systematic programs of interdisciplinary research activities in two research centres at the University of Queensland. Framed by Bruhn's (2000, p. 58) theoretical discourse about interdisciplinary research as 'a philosophy, an art form, an artifact, and an antidote', this paper emphasises the need for such programs to embed the development of students' interdisciplinary research skills and attitudes within their research projects. The two diverse programs also emphasise experiential, active and interactive learning techniques and are centred upon the development of students' reflective practice skills.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen is being seen as an alternative energy carrier to conventional hydrocarbons to reduce greenhouse gas emissions. High efficiency separation technologies to remove hydrogen from the greenhouse gas, carbon dioxide, are therefore in growing demand. Traditional thermodynamic separation systems utilise distillation, absorption and adsorption, but are limited in efficiency at compact scales. Molecular sieve silica (MSS) membranes can perform this separation as they have high permselectivity of hydrogen to carbon dioxide, but their stability under thermal cycling is not well reported. In this work we exposed a standard MSS membrane and a carbonised template MSS (CTMSS) membrane to thermal cycling from 100 to 450°C. The standard MSS and carbonised template CTMSS membranes both showed permselectivity of helium to nitrogen dropping from around 10 to 6 in the first set of cycles, remaining stable until the last test. The permselectivity drop was due to small micropore collapse, which occurred via structure movement during cycling. Simulating single stage membrane separation with a 50:50 molar feed of H2:CO2, H2 exiting the permeate stream would start at 79% and stabilise at 67%. Higher selectivity membranes showed less of a purity drop, indicating the margin at which to design a stable membrane separation unit for CO2 capture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic metal oxide materials are generally poor proton conductors as conductivities are lower than 10-5-10-6 S.cm-1. However, by functionalising Silica, Zirconia or Titania, proton conduction increases by up to 5 orders of magnitude. Hence, functionalised nanomaterials are becoming very competitive against conventional electrolyte materials such as Nafion. In this work, sol-gel processes are employed to produce silica phosphate, zirconia phosphate and titania phosphate functionalised nanoparticles. Furthermore, conductivities at hydrate conditions are investigated, and nanoparticle formation and functionalisation effects on proton conductivity are discussed. Results show conductivities up to 10-1 S.cm-1 (95% RH). Proton conduction increases with the functionalisation content, however heat treatment of nanoparticles locks the functionality in the crystal phase, thus inhibiting proton conduction. Controlling the mesopore phase allows for high proton conduction at hydrated conditions, clearly indicating facilitated ion transport through the pore channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commercially available proton exchange membranes such as Nafion do not meet the requirements for high power density direct methanol fuel cells, partly due to their high methanol permeability. The aim of this work is to develop a new class of high-proton conductivity membranes, with thermal and mechanical stability similar to Nafion and reduced methanol permeability. Nanocomposite membranes were produced by the in-situ sol-gel synthesis of silicon dioxide particles in preformed Nafion membranes. Microstructural modification of Nafion membranes with silica nanoparticles was shown in this work to reduce methanol crossover from 7.48x10-6 cm2s^-1 for pure Nafion® to 2.86 x10-6 cm2s^-1 for nanocomposite nafion membranes (Methanol 50% (v/v) solution, 75 degrees C). Best results were achieved with a silica composition of 2.6% (w/w). We propose that silica inhibits the conduction of methanol through Nafion by blocking sites necessary for methanol diffusion through the polymer electrolyte membrane. Effects of surface chemistry, nanoparticle formation and interactions with Nafion matrix are further addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rectangular dropshafts, commonly used in sewers and storm water systems, are characterised by significant flow aeration. New detailed air-water flow measurements were conducted in a near-full-scale dropshaft at large discharges. In the shaft pool and outflow channel, the results demonstrated the complexity of different competitive air entrainment mechanisms. Bubble size measurements showed a broad range of entrained bubble sizes. Analysis of streamwise distributions of bubbles suggested further some clustering process in the bubbly flow although, in the outflow channel, bubble chords were in average smaller than in the shaft pool. A robust hydrophone was tested to measure bubble acoustic spectra and to assess its field application potential. The acoustic results characterised accurately the order of magnitude of entrained bubble sizes, but the transformation from acoustic frequencies to bubble radii did not predict correctly the probability distribution functions of bubble sizes.