36 resultados para integrated optomechanical analysis
em University of Queensland eSpace - Australia
Resumo:
Chemorheology (and thus process modeling) of highly filled thermosets used in integrated circuit (IC) packaging has been complicated by their highly filled nature, fast kinetics of curing, and viscoelastic nature. This article summarizes a more thorough chemorheological analysis of a typical IC packaging thermoset material, including novel isothermal and nonisothermal multiwave parallel-plate chemorheology. This new chemorheological analysis may be used to optimize existing and design new IC packaging processes. (C) 1997 John Wiley & Sons, Inc.
Resumo:
This book chapter represents a synthesis of the work which started in my PhD and which has been the conceptual basis for all of my research since 1993. The chapter presents a method for scientists and managers to use for selecting the type of remotely sensed data to use to meet their information needs associated with a mapping, monitoring or modelling application. The work draws on results from several of my ARC projects, CRC Rainforest and Coastal projects and theses of P.Scarth , K.Joyce and C.Roelfsema.
Resumo:
Objective: Five double-blind, randomized, saline-controlled trials (RCTs) were included in the United States marketing application for an intra-articular hyaluronan (IA-HA) product for the treatment of osteoarthritis (OA) of the knee. We report an integrated analysis of the primary Case Report Form (CRF) data from these trials. Method. Trials were similar in design, patient population and outcome measures - all included the Lequesne Algofunctional Index (LI), a validated composite index of pain and function, evaluating treatment over 3 months. Individual patient data were pooled; a repeated measures analysis of covariance was performed in the intent-to-treat (ITT) population. Analyses utilized both fixed and random effects models. Safety data from the five RCTs were summarized. Results: A total of 1155 patients with radiologically confirmed knee OA were enrolled: 619 received three or five IA-HA injections; 536 received. placebo saline injections. In the active and control groups, mean ages were 61.8 and 61.4 years; 62.4% and 58.8% were women; baseline total Lequesne scores 11.03 and 11.30, respectively. Integrated analysis of the pooled data set found a statistically significant reduction (P < 0.001) in total Lequesne score with hyaluronan (HA) (-2.68) vs placebo (-2.00); estimated difference -0.68 (95% CI: -0.56 to -0.79), effect size 0.20. Additional modeling approaches confirmed robustness of the analyses. Conclusions: This integrated analysis demonstrates that multiple design factors influence the results of RCTs assessing efficacy of intra-articular (IA) therapies, and that integrated analyses based on primary data differ from meta-analyses using transformed data. (C) 2006 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Resumo:
Previous work has identified several short-comings in the ability of four spring wheat and one barley model to simulate crop processes and resource utilization. This can have important implications when such models are used within systems models where final soil water and nitrogen conditions of one crop define the starting conditions of the following crop. In an attempt to overcome these limitations and to reconcile a range of modelling approaches, existing model components that worked demonstrably well were combined with new components for aspects where existing capabilities were inadequate. This resulted in the Integrated Wheat Model (I_WHEAT), which was developed as a module of the cropping systems model APSIM. To increase predictive capability of the model, process detail was reduced, where possible, by replacing groups of processes with conservative, biologically meaningful parameters. I_WHEAT does not contain a soil water or soil nitrogen balance. These are present as other modules of APSIM. In I_WHEAT, yield is simulated using a linear increase in harvest index whereby nitrogen or water limitations can lead to early termination of grainfilling and hence cessation of harvest index increase. Dry matter increase is calculated either from the amount of intercepted radiation and radiation conversion efficiency or from the amount of water transpired and transpiration efficiency, depending on the most limiting resource. Leaf area and tiller formation are calculated from thermal time and a cultivar specific phyllochron interval. Nitrogen limitation first reduces leaf area and then affects radiation conversion efficiency as it becomes more severe. Water or nitrogen limitations result in reduced leaf expansion, accelerated leaf senescence or tiller death. This reduces the radiation load on the crop canopy (i.e. demand for water) and can make nitrogen available for translocation to other organs. Sensitive feedbacks between light interception and dry matter accumulation are avoided by having environmental effects acting directly on leaf area development, rather than via biomass production. This makes the model more stable across environments without losing the interactions between the different external influences. When comparing model output with models tested previously using data from a wide range of agro-climatic conditions, yield and biomass predictions were equal to the best of those models, but improvements could be demonstrated for simulating leaf area dynamics in response to water and nitrogen supply, kernel nitrogen content, and total water and nitrogen use. I_WHEAT does not require calibration for any of the environments tested. Further model improvement should concentrate on improving phenology simulations, a more thorough derivation of coefficients to describe leaf area development and a better quantification of some processes related to nitrogen dynamics. (C) 1998 Elsevier Science B.V.
Resumo:
Disease resistance is associated with a plant defense response that involves an integrated set of signal transduction pathways. Changes in the expression patterns of 2.375 selected genes were examined simultaneously by cDNA microarray analysis in Arabidopsis thaliana after inoculation with an incompatible fungal pathogen Alternaria brassicicola or treatment with the defense-related signaling molecules salicylic acid (SA), methyl jasmonate (MJ), or ethylene, Substantial changes (up- and down-regulation) in the steady-state abundance of 705 mRNAs were observed in response to one or more of the treatments, including known and putative defense-related genes and 106 genes with no previously described function or homology, In leaf tissue inoculated with A. brassicicola, the abundance of 168 mRNAs was increased more than 2.5-fold, whereas that of 39 mRNAs was reduced. Similarly, the abundance of 192, 221, and 55 mRNAs was highly (>2.5-fold) increased after treatment with SA, MJ, and ethylene, respectively. Data analysis revealed a surprising level of coordinated defense responses, including 169 mRNAs regulated by multiple treatments/defense pathways. The largest number of genes coinduced (one of four induced genes) and corepressed was found after treatments with SA and MJ. In addition, 50% of the genes induced by ethylene treatment were also induced by MJ treatment. These results indicated the existence of a substantial network of regulatory interactions and coordination occurring during plant defense among the different defense signaling pathways, notably between the salicylate and jasmonate pathways that were previously thought to act in an antagonistic fashion.
Resumo:
Oral squamous cell carcinoma (OSCC) is associated with high morbidity and mortality which is due, at least in part, to late detection. Precancerous and cancerous oral lesions may mimic any number of benign oral lesions, and as such may be left without investigation and treatment until they are well advanced. Over the past several years there has been renewed interest in oral cytology as an adjuvant clinical tool in the investigation of oral mucosal lesions. The purpose of the present study was to compare the usefulness of ploidy analysis after Feulgen stained cytological thin-prep specimens with traditional incisional biopsy and routine histopathological examination for the assessment of the pre-malignant potential of oral mucosal lesions. An analysis of the cytological specimens was undertaken with virtual microscopy which allowed for rapid and thorough analysis of the complete cytological specimen. 100 healthy individuals between 30 and 70 years of age, who were non-smokers, non-drinkers and not taking any medication, had cytological specimens collected from both the buccal mucosa and lateral margin of tongue to establish normal cytology parameters within a control population. Patients with a presumptive clinical diagnosis of lichen planus, leukoplakia or OSCC had lesional cytological samples taken prior to their diagnostic biopsy. Standardised thin preparations were prepared and each specimen stained by both Feuglen and Papanicolau methods. High speed scanning of the complete slide at 40X magnification was undertaken using the Aperio Scanscope TM and the green channel of the resultant image was analysed after threshold segmentation to isolate only nuclei and the integrated optical density of each nucleus taken as a gross measure of the DNA content (ploidy). Preliminary results reveal that ploidy assessment of oral cytology holds great promise as an adjunctive prognostic factor in the analysis of the malignant potential of oral mucosal lesions.
Resumo:
An algorithm for explicit integration of structural dynamics problems with multiple time steps is proposed that averages accelerations to obtain subcycle states at a nodal interface between regions integrated with different time steps. With integer time step ratios, the resulting subcycle updates at the interface sum to give the same effect as a central difference update over a major cycle. The algorithm is shown to have good accuracy, and stability properties in linear elastic analysis similar to those of constant velocity subcycling algorithms. The implementation of a generalised form of the algorithm with non-integer time step ratios is presented. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
This paper explores the feasibility of adopting an integrated economic approach to raise farmers’ tolerance of the presence of elephants on their farming lands. Responses to this approach were sought from a sample of farmers in the areas affected by human elephant conflict in the northwestern province of Sri Lanka. Results from a contingent valuation survey of their willingness to pay for a scheme to conserve elephants are also reported. Two separate logit regression analyses were undertaken to examine the factors that influence the farmers’ responses for the payment principle question and their opinions on the integrated economic approach. Although found that the majority of the respondents expressed their willingness to pay for the proposed scheme and supported for the implementation of the integrated approach, we have insufficient data yet to determine if their support and financial contribution would be sufficient to set up this programme and also to predict its economic viability. Nevertheless, the overall finding of this study provides an improved economic assessment of the farmers’ attitudes towards the wild elephant in Sri Lanka. At the same time the study shows that, contrary to commonly held assumptions, farmers in this developing country, do support wildlife conservation.
Resumo:
The catalytic properties of enzymes are usually evaluated by measuring and analyzing reaction rates. However, analyzing the complete time course can be advantageous because it contains additional information about the properties of the enzyme. Moreover, for systems that are not at steady state, the analysis of time courses is the preferred method. One of the major barriers to the wide application of time courses is that it may be computationally more difficult to extract information from these experiments. Here the basic approach to analyzing time courses is described, together with some examples of the essential computer code to implement these analyses. A general method that can be applied to both steady state and non-steady-state systems is recommended. (C) 2001 academic Press.
Resumo:
In this paper a methodology for integrated multivariate monitoring and control of biological wastewater treatment plants during extreme events is presented. To monitor the process, on-line dynamic principal component analysis (PCA) is performed on the process data to extract the principal components that represent the underlying mechanisms of the process. Fuzzy c-means (FCM) clustering is used to classify the operational state. Performing clustering on scores from PCA solves computational problems as well as increases robustness due to noise attenuation. The class-membership information from FCM is used to derive adequate control set points for the local control loops. The methodology is illustrated by a simulation study of a biological wastewater treatment plant, on which disturbances of various types are imposed. The results show that the methodology can be used to determine and co-ordinate control actions in order to shift the control objective and improve the effluent quality.