4 resultados para integrated optics
em University of Queensland eSpace - Australia
Resumo:
We show that two evanescently coupled χ((2)) parametric down-converters inside a Fabry-Perot cavity provide a tunable source of quadrature squeezed light, Einstein-Podolsky-Rosen (EPR) correlations and quantum entanglement. Analyzing the operation in the below threshold regime, we show how these properties can be controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with integrated optics, it provides a possible route to rugged and stable EPR sources.
Resumo:
We show that two evanescently coupled chi((2)) parametric oscillators provide a tunable bright source of quadrature squeezed light, Einstein-Podolsky-Rosen correlations and quantum entanglement. Analysing the system in the above threshold regime, we demonstrate that these properties can be controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with integrated optics, it provides a possible route to rugged and stable EPR sources. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We show that the intracavity Kerr nonlinear coupler is a potential source of bright continuous variable entangled light beams which are tunable and spatially separated. We use a linearized fluctuation analysis to calculate the necessary correlations in regimes where it is valid. This means that we are treating regimes where the system exhibits Gaussian statistics so that well-known criteria are both necessary and sufficient to demonstrate entanglement. This system may be realized with integrated optics and thus provides a potentially rugged and stable source of bright entangled beams.