160 resultados para instrumentation design
em University of Queensland eSpace - Australia
Resumo:
In this paper we use sensor-annotated abstraction hierarchies (Reising & Sanderson, 1996, 2002a,b) to show that unless appropriately instrumented, configural displays designed according to the principles of ecological interface design (EID) might be vulnerable to misinterpretation when sensors become unreliable or are unavailable. Building on foundations established in Reising and Sanderson (2002a) we use a pasteurization process control example to show how sensor-annotated AHs help the analyst determine the impact of different instrumentation engineering policies on a configural display that is part of an ecological interface. Our analyses suggest that configural displays showing higher-order properties of a system are especially vulnerable under some conservative instrumentation configurations. However, sensor-annotated AHs can be used to indicate where corrective instrumentation might be placed. We argue that if EID is to be effectively employed in the design of displays for complex systems, then the information needs of the human operator need to be considered while instrumentation requirements are being formulated. Rasmussen's abstraction hierarchy-and particularly its extension to the analysis of information captured by sensors and derived from sensors-may therefore be a useful adjunct to up-stream instrumentation design. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper describes a hybrid numerical method for the design of asymmetric magnetic resonance imaging magnet systems. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. A new type of asymmetric magnet is proposed in this work. The asymmetric MRI magnet allows the diameter spherical imaging volume to be positioned close to one end of the magnet. The main advantages of making the magnet asymmetric include the potential to reduce the perception of claustrophobia for the patient, better access to the patient by attending physicians, and the potential for reduced peripheral nerve stimulation due to the gradient coil configuration. The results highlight that the method can be used to obtain an asymmetric MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1.2 m in length. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 1999 Academic Press.
Resumo:
In this work a new approach for designing planar gradient coils is outlined for the use in an existing MRI apparatus. A technique that allows for gradient field corrections inside the diameter-sensitive volume is deliberated. These corrections are brought about by making changes to the wire paths that constitute the coil windings, and hence, is called the path correction method. The existing well-known target held method is used to gauge the performance of a typical gradient coil. The gradient coil design methodology is demonstrated for planar openable gradient coils that can be inserted into an existing MRI apparatus. The path corrected gradient coil is compared to the coil obtained using the target field method. It is shown that using a wire path correction with optimized variables, winding patterns that can deliver high magnetic gradient field strengths and large imaging regions can be obtained.
Resumo:
An inverse, current density mapping (CDM) method has been developed for the design of elliptical cross-section MRI magnets. The method provides a rapid prototyping system for unusual magnet designs, as it generates a 3D current density in response to a set of target field and geometric constraints. The emphasis of this work is on the investigation of new elliptical coil structures for clinical MRI magnets. The effect of the elliptical aspect ratio on magnet performance is investigated. Viable designs are generated for symmetric, asymmetric and open architecture elliptical magnets using the new method. Clinically relevant attributes such as reduced stray field and large homogeneous regions relative to total magnet length are included in the design process and investigated in detail. The preliminary magnet designs have several novel features.
Resumo:
In this work, a new method of optimization is successfully applied to the theoretical design of compact, actively shielded, clinical MRI magnets. The problem is formulated as a two-step process in which the desired current densities on multiple, cc-axial surface layers are first calculated by solving Fredholm equations of the first kind. Non-linear optimization methods with inequality constraints are then invoked to fit practical magnet coils to the desired current densities. The current density approach allows rapid prototyping of unusual magnet designs. The emphasis of this work is on the optimal design of short, actively-shielded MRI magnets for whole-body imaging. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric, and asymmetric MRI magnets. Magnet designs are presented for actively-shielded, symmetric magnets of coil length 1.0 m, which is considerably shorter than currently available designs of comparable dsv size. Novel, actively-shielded, asymmetric magnet designs are also presented in which the beginning of a 50-cm dsv is positioned just 11 cm from the end of the coil structure, allowing much improved access to the patient and reduced patient claustrophobia. Magn Reson Med 45:331540, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Radio-frequency (RF) coils are a necessary component of magnetic resonance imaging (MRI) systems. When used in transmit operation, they act to generate a homogeneous RF magnetic field within a volume of interest and when in receive operation, they act to receive the nuclear magnetic resonance signal from the RF-excited specimen. This paper outlines a procedure for the design of open RF coils using the time-harmonic inverse method. This method entails the calculation of an ideal current density on a multipaned planar surface that would generate a specified magnetic field within the volume of interest. Because of the averaging effect of the regularization technique in the matrix solution, the specified magnetic field is shaped within an iterative procedure until the generated magnetic field matches the desired magnetic field. The stream-function technique is used to ascertain conductor positions and a method of moments package is then used to finalize the design. An open head/neck coil was designed to operate in a clinical 2T MRI system and the presented results prove the efficacy of this design methodology.
Resumo:
Laser heating Ar-40/Ar-39 geochronology provides high analytical precision and accuracy, mum-scale spatial resolution. and statistically significant data sets for the study of geological and planetary processes, A newly commissioned Ar-40/Ar-39 laboratory at CPGeo/USP, Sao Paulo, Brazil, equips the Brazilian scientific community with a new powerful tool applicable to the study of geological and cosmochemical processes. Detailed information about laboratory layout, environmental conditions, and instrumentation provides the necessary parameters for the evaluation of the CPGeo/USp Ar-40/Ar-39 suitability to a diverse range of applications. Details about analytical procedures, including mineral separation, irradiation at the IPEN/CNEN reactor at USP, and mass spectrometric analysis enable potential researchers to design the necessary sampling and sample preparation program suitable to the objectives of their study. Finally, the results of calibration tests using Ca and K salts and glasses, international mineral standards, and in-house mineral standards show that the accuracy and precision obtained at the Ar-40/Ar-39 laboratory at CPGeo/USP are comparable to results obtained in the most respected laboratories internationally. The extensive calibration and standardization procedures under-taken ensure that the results of analytical studies carried out in our laboratories will gain immediate international credibility, enabling Brazilian students and scientists to conduct forefront research in earth and planetary sciences.
Resumo:
The emphasis of this work is on the optimal design of MRI magnets with both superconducting coils and ferromagnetic rings. The work is directed to the automated design of MRI magnet systems containing superconducting wire and both `cold' and `warm' iron. Details of the optimization procedure are given and the results show combined superconducting and iron material MRI magnets with excellent field characteristics. Strong, homogeneous central magnetic fields are produced with little stray or external field leakage. The field calculations are performed using a semi-analytical method for both current coil and iron material sources. Design examples for symmetric, open and asymmetric clinical MRI magnets containing both superconducting coils and ferromagnetic material are presented.
Resumo:
Magnetic resonance imaging (MRI) magnets have very stringent constraints on the homogeneity of the static magnetic field that they generate over desired imaging regions. The magnet system also preferably generates very little stray field external to its structure, so that ease of siting and safety are assured. This work concentrates on deriving, means of rapidly computing the effect of 'cold' and 'warm' ferromagnetic material in or around the superconducting magnet system, so as to facilitate the automated design of hybrid material MR magnets. A complete scheme for the direct calculation of the spherical harmonics of the magnetic field generated by a circular ring of ferromagnetic material is derived under the conditions of arbitrary external magnetizing fields. The magnetic field produced by the superconducting coils in the system is computed using previously developed methods. The final, hybrid algorithm is fast enough for use in large-scale optimization methods. The resultant fields from a practical example of a 4 T, clinical MRI magnet containing both superconducting coils and magnetic material are presented.
Resumo:
In small, cylindrical gradient coils consisting of a single layer of wires, the limiting factor in achieving large magnetic field gradients is the rapid increase in coil resistance with efficiency. This behavior results from the decrease in the maximum usable wire diameter as the number of turns is increased. By adopting a multilayer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favorable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. By extending the theory used to design standard cylindrical gradient coils, mathematical expressions have been developed that allow the design of multilayer coils. These expressions have previously been applied to the design of a four-layer z-gradient coil. As a further development, the equations have now been modified to allow the design of multilayer transverse gradient coils. The variation in coil performance with the number of layers employed has been investigated for coils of a size suitable for use in NMR microscopy, and the effect of constructing the coil using wires or cuts in a continuous conducting surface has also been assessed. We find that at fixed resistance a small wire-wound two-layer coil offers an increase in efficiency of a factor of about 1.5 compared with a single-layer coil. In addition, a two-layer coil of 10-mm inner diameter has been designed and built. This coil had an efficiency of 0.41 Tm-1 A(-1), a resistance of 0.96 +/- 0.01 Omega, and an inductance of 22.3 +/- 0.2 muH. The coil produces a gradient that deviates from linearity by less than 5% over a central cylindrical region of interest of height and length 6.2 mm. (C) 2003 Wiley Periodicals, Inc.
Laboratory and in situ investigations of tracking cutters for computer-aided design of shearer drums
Resumo:
Interfaces designed according to ecological interface design (EID) display higher-order relations and properties of a work domain so that adaptive operator problem solving can be better supported under unanticipated system conditions. Previous empirical studies of EID have assumed that the raw data required to derive and communicate higher-order information would be available and reliable. The present research examines the relative advantages of an EID interface over a conventional piping-and-instrumentation diagram (PID) when instrumentation is maximally or only minimally adequate. Results show an interaction between interface and the adequacy of the instrumentation. Failure diagnosis performance with the EID interface with maximally adequate instrumentation is best overall. Performance with the EID interface drops more drastically from maximally to minimally adequate instrumentation than does performance with the PID interface, to the point where the EID interface with minimally adequate instrumentation supports nonsignificantly worse performance than does the equivalent PID interface. Actual or potential applications of this research include design of instrumentation and displays for complex industrial processes.