8 resultados para instantaneous complex power
em University of Queensland eSpace - Australia
Resumo:
The purpose of this study was to compare average muscle fiber conduction velocity (CV) and its changes over time in the upper trapezius muscle during a repetitive upper limb task in people with chronic neck pain and in healthy controls. Surface EMG signals were detected bilaterally from the upper trapezius muscle of 19 patients and nine healthy controls using linear adhesive arrays of four electrodes. Subjects were asked to tap their hands in a cyclic manner between targets positioned mid-thigh and 120 degrees of shoulder flexion, to the beat of a metronome set at 88 beats/min for up to 5 min. Muscle fiber CV and instantaneous mean power spectral frequency were estimated for each cycle at the time instant corresponding to 90 degrees of shoulder flexion. Average muscle fiber CV of the upper trapezius muscle was higher in people with chronic neck pain (mean +/- SE, 4.8 +/- 0.1 m/s) than in control subjects (4.4 +/- 0.1 m/s; P
Resumo:
As for other complex diseases, linkage analyses of schizophrenia (SZ) have produced evidence for numerous chromosomal regions, with inconsistent results reported across studies. The presence of locus heterogeneity appears likely and may reduce the power of linkage analyses if homogeneity is assumed. In addition, when multiple heterogeneous datasets are pooled, intersample variation in the proportion of linked families ( a) may diminish the power of the pooled sample to detect susceptibility loci, in spite of the larger sample size obtained. We compare the significance of linkage. findings obtained using allele- sharing LOD scores ( LODexp) - which assume homogeneity - and heterogeneity LOD scores ( HLOD) in European American and African American NIMH SZ families. We also pool these two samples and evaluate the relative power of the LODexp and two different heterogeneity statistics. One of these ( HLOD- P) estimates the heterogeneity parameter a only in aggregate data, while the second ( HLOD- S) determines a separately for each sample. In separate and combined data, we show consistently improved performance of HLOD scores over LODexp. Notably, genome-wide significant evidence for linkage is obtained at chromosome 10p in the European American sample using a recessive HLOD score. When the two samples are combined, linkage at the 10p locus also achieves genome-wide significance under HLOD- S, but not HLOD- P. Using HLOD- S, improved evidence for linkage was also obtained for a previously reported region on chromosome 15q. In linkage analyses of complex disease, power may be maximised by routinely modelling locus heterogeneity within individual datasets, even when multiple datasets are combined to form larger samples.
Resumo:
Background The identification and characterization of genes that influence the risk of common, complex multifactorial disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. We have previously introduced a genetic programming optimized neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of gene combinations associated with disease risk. The goal of this study was to evaluate the power of GPNN for identifying high-order gene-gene interactions. We were also interested in applying GPNN to a real data analysis in Parkinson's disease. Results We show that GPNN has high power to detect even relatively small genetic effects (2–3% heritability) in simulated data models involving two and three locus interactions. The limits of detection were reached under conditions with very small heritability (
Resumo:
Background: The identification and characterization of genes that influence the risk of common, complex multifactorial disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. We have previously introduced a genetic programming optimized neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of gene combinations associated with disease risk. The goal of this study was to evaluate the power of GPNN for identifying high-order gene-gene interactions. We were also interested in applying GPNN to a real data analysis in Parkinson's disease. Results: We show that GPNN has high power to detect even relatively small genetic effects (2-3% heritability) in simulated data models involving two and three locus interactions. The limits of detection were reached under conditions with very small heritability (
Resumo:
The article argues that economics will have to become a complex systems science before economists can comfortably incorporate institutionalist and evolutionary economics into mainstream theory. The article compares the complex adaptive system of John Foster with that of standard economic theory and illustrates the difference through an examination of familiar production function. The place of neoclassical, Keynesian economics in complex systems is considered. The article concludes that convincing, multiple models have been made possible by the increase in widely available computing power available.
Resumo:
There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-I gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-IA. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.
Resumo:
This paper explores the contemporary relevance of sociological theorisations centred on medical power, including the medical dominance and deprofessionalisation theses. To achieve this it examines two issues that have been tentatively linked to the relative decline of the power and autonomy of biomedicine - complementary and alternative medicine (CAM) and the Internet-informed patient. Drawing on these two different but interconnected social phenomena, this paper reflects on the potential limitations of power-based theorisations of the medical profession and its relationship to patients and other non-biomedically situated professional groups. It is argued that power-based conceptual schemas may not adequately reflect the non-linear and complex strategic adaptations that are occurring among professional groups.
Resumo:
Grid computing is an emerging technology for providing the high performance computing capability and collaboration mechanism for solving the collaborated and complex problems while using the existing resources. In this paper, a grid computing based framework is proposed for the probabilistic based power system reliability and security analysis. The suggested name of this computing grid is Reliability and Security Grid (RSA-Grid). Then the architecture of this grid is presented. A prototype system has been built for further development of grid-based services for power systems reliability and security assessment based on probabilistic techniques, which require high performance computing and large amount of memory. Preliminary results based on prototype of this grid show that RSA-Grid can provide the comprehensive assessment results for real power systems efficiently and economically.