10 resultados para infinite heteroclinic loops

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A group is termed parafree if it is residually nilpotent and has the same nilpotent quotients as a given free group. Since free groups are residually nilpotent, they are parafree. Nonfree parafree groups abound and they all have many properties in common with free groups. Finitely presented parafree groups have solvable word problems, but little is known about the conjugacy and isomorphism problems. The conjugacy problem plays an important part in determining whether an automorphism is inner, which we term the inner automorphism problem. We will attack these and other problems about parafree groups experimentally, in a series of papers, of which this is the first and which is concerned with the isomorphism problem. The approach that we take here is to distinguish some parafree groups by computing the number of epimorphisms onto selected finite groups. It turns out, rather unexpectedly, that an understanding of the quotients of certain groups leads to some new results about equations in free and relatively free groups. We touch on this only lightly here but will discuss this in more depth in a future paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an analysis of argon adsorption in cylindrical pores having amorphous silica structure by means of a nonlocal density functional theory (NLDFT). In the modeling, we account for the radial and longitudinal density distributions, which allow us to consider the interface between the liquidlike and vaporlike fluids separated by a hemispherical meniscus in the canonical ensemble. The Helmholtz free energy of the meniscus was determined as a function of pore diameter. The canonical NLDFT simulations show the details of density rearrangement at the vaporlike and liquidlike spinodal points. The limits of stability of the smallest bridge and the smallest bubble were also determined with the canonical NLDFT. The energy of nucleation as a function of the bulk pressure and the pore diameter was determined with the grand canonical NLDFT using an additional external potential field. It was shown that the experimentally observed reversibility of argon adsorption isotherms at its boiling point up to the pore diameter of 4 nm is possible if the potential barrier of 22kT is overcome due to density fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major chemical challenge is the structural mimicry of discontinuous protein surfaces brought into close proximity through polypeptide folding. We report the design, synthesis, and solution structure of a highly functionalized saddle-shaped macrocyclic scaffold, constrained by oxazoles and thiazoles,upporting two short peptide loops projecting orthogonally from the same face of the scaffold. This structural mimetic of two interhelical loops of cytochrome b(562) illustrates a promising approach to structurally mimicking discontinuous loops of proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Grand Canonical Monte Carlo simulation (GCMC) method is used to study the effects of pore constriction on the adsorption of argon at 87.3 K in carbon slit pores of infinite and finite lengths. It is shown that the pore constriction affects the pattern of adsorption isotherm. First, the isotherm of the composite pore is greater than that of the uniform pore having the same width as the larger cavity of the composite pore. Secondly, the hysteresis loop of the composite pore is smaller than and falls between those of uniform pores. Two types of hysteresis loops have been observed, irrespective of the absence or presence of constriction and their presence depend on pore width. One hysteresis loop is associated with the compression of adsorbed particles and this phenomenon occurs after pore has been filled with particles. The second hysteresis loop is the classical condensation-evaporation loop. The hysteresis loop of a composite pore depends on the sizes of the larger cavity and the constriction. Generally, it is found that the pore blocking effect is not manifested in composite slit pores, and this result does not support the traditional irkbottle pore hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Monte Carlo simulation method is Used 10 study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shelf and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 11111 using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the Surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid Surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrapeptide analogue H-[Glu-Ser-Lys(Thz)]-OH, containing a turn-inducing thiazole constraint, was used as a template to produce a 21-membered structurally characterized loop by linking Glu and Lys side chains with a Val-Ile dipeptide. This template was oligomerized in one pot to a library (cyclo-[1](n), n = 2-10) of giant symmetrical macrocycles (up to 120-membered rings), fused to 2-10 appended loops that were carried intact through multiple oligomerization (chain extension) and cyclization (chain terminating) reactions of the template. A three-dimensional solution structure for cyclo-[1](3) shows all three appended loops projecting from the same face of the macrocycle. This is a promising approach to separating pepticle motifs over large distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein-protein interactions are central to all biological processes. The creation of small molecules that can structurally mimic the fundamental units of protein architecture (helices, strands, turns, and their combinations) could potentially be used to reproduce important bioactive protein surfaces and interfere in biological processes. Although this field is still in relative infancy, substantial progress is being made in creating small molecules that can mimic these individual secondary structural elements of proteins. However the generation of compounds that can reproduce larger protein surfaces, composed of multiple structural elements of proteins, has proven to be much more challenging. This presentation will describe some densely functionalised small molecules that do constrain multiple peptide motifs in defined structures such as loop bundles, helix bundles, strand and sheet bundles. An example of a helix bundle that undergoes conformational changes to a beta sheet bundle and aggregates into multi-micron length peptide nanofibre 'rope' will be described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Back and von Wright have developed algebraic laws for reasoning about loops in the refinement calculus. We extend their work to reasoning about probabilistic loops in the probabilistic refinement calculus. We apply our algebraic reasoning to derive transformation rules for probabilistic action systems. In particular we focus on developing data refinement rules for probabilistic action systems. Our extension is interesting since some well known transformation rules that are applicable to standard programs are not applicable to probabilistic ones: we identify some of these important differences and we develop alternative rules where possible. In particular, our probabilistic action system data refinement rules are new.

Relevância:

20.00% 20.00%

Publicador: