25 resultados para hypoxic-ischemic-encephalopathy

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparison of a constant (continuous delivery of 4% FiO(2)) and a variable (initial 5% FiO(2) with adjustments to induce low amplitude EEG (LAEEG) and hypotension) hypoxic/ischemic insult was performed to determine which insult was more effective in producing a consistent degree of survivable neuropathological damage in a newborn piglet model of perinatal asphyxia. We also examined which physiological responses contributed to this outcome. Thirty-nine 1-day-old piglets were subjected to either a constant hypoxic/ischemic insult of 30- to 37-min duration or a variable hypoxic/ischemic insult of 30-min low peak amplitude EEG (LAEEG < 5 mu V) including 10 min of low mean arterial blood pressure (MABP < 70% of baseline). Control animals (n = 6) received 21% FiO(2) for the duration of the experiment. At 72 h, the piglets were euthanased, their brains removed and fixed in 4% paraformaldehyde and assessed for hypoxic/ischemic injury by histological analysis. Based on neuropathology scores, piglets were grouped as undamaged or damaged; piglets that did not survive to 72 h were grouped separately as dead. The variable insult resulted in a greater number of piglets with neuropathological damage (undamaged = 12.5%, damaged = 68.75%, dead = 18.75%) while the constant insult resulted in a large proportion of undamaged piglets (undamaged = 50%, damaged = 22.2%, dead = 27.8%). A hypoxic insult varied to maintain peak amplitude EEG < 5 mu V results in a greater number of survivors with a consistent degree of neuropathological damage than a constant hypoxic insult. Physiological variables MABP, LAEEG, pH and arterial base excess were found to be significantly associated with neuropathological outcome. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The usefulness of umbilical artery Doppler velocimetry for the monitoring of diabetic pregnancies is controversial. The aim of the present study was to assess whether umbilical artery Doppler velocity waveform analysis can predict adverse perinatal outcomes for pregnancies complicated by pre-existing diabetes mellitus. Methods: All diabetic pregnancies (type 1 and 2) delivered at Mater Mothers' Hospital, Queensland, between 1 January 1995 and 31 December 1999 were included. All pregnant diabetic women were monitored with umbilical artery Doppler velocimetry at 28, 32, 36, and 38 weeks' gestation. Adverse perinatal outcome was defined as pregnancies with one or more of the following: small-for-gestational age, Caesarean section for non-reassuring cardiotocography, fetal acidaemia at delivery, 1-min Apgar of 3 or less, 5-min Apgar of less than 7, hypoxic ischaemic encephalopathy or perinatal death. Abnormal umbilical artery Doppler velocimetry was defined as a pulsatility index of 95th centile or higher for gestation. Results: One hundred and four pregnancies in women with pre-existing diabetes had umbilical arterial Doppler studies carried out during the study period. Twenty-three pregnancies (22.1%) had an elevated pulsatility index. If the scans were carried out within 2 weeks of delivery, 71% of pregnancies with abnormal umbilical Doppler had adverse outcomes (P < 0.01; likelihood ratio, 4.2). However, the sensitivity was 35%; specificity was 94%; positive predictive value was 80%; and negative predictive value was 68%. Only 30% of women with adverse perinatal outcomes had abnormal umbilical arterial Doppler flow. Conclusion: Umbilical artery Doppler velocimetry is not a good predictor of adverse perinatal outcomes in diabetic pregnancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To identify potential molecular genetic determinants of cardiovascular ischemic tolerance in wild-type and transgenic hearts overexpressing A(1) adenosine receptors (A(1)ARs). Methods: cDNA microarrays were used to explore expression of 1824 genes ill wild-type hearts and ischemia-tolerant mouse hearts overexpressing A(1)ARs. Results: Overexpression of A(1)ARs reduced post-ischemic contractile dysfunction, limited arrhythmogenesis, and reduced necrosis by similar to80% in hearts subjected to 30 min global ischemia 60 mill reperfusion. Cardioprotection was abrogated by acute A(1)AR antagonism, and only a small number (19) of genes were modified by A(1)AR overexpression in normoxic hearts. Ischemia-reperfusion significantly altered expression of 75 genes in wild-type hearts (14 induced, 61 down-regulated), including genes for metabolic enzymes, structural/motility proteins, cell signaling proteins, defense/growth proteins, and regulators of transcription and translation. A(1)AR overexpression reversed the majority of gene down-regulation whereas gene induction was generally unaltered. Additionally, genes involved in cell defence, signaling and gene expression were selectively modified by ischemia in transgenic hearts (33 induced, 10 down-regulated), possibly contributing to the protected phenotype. Real-time PCR verified changes in nine selected genes, revealing concordance with array data. Transcription of the A(1)AR gene was also modestly reduced post-ischemia, consistent with impaired functional sensitivity to A(1)AR stimulation Conclusions: Data are presented regarding the early post-ischemic gene profile of intact heart. Reduced A(1)AR transcription is observed which may contribute to poor outcome from ischemia. A(1)AR overexpression selectively modifies post-ischemic gene expression, potentially contributing to ischemic-tolerance. (C) 2003 European Society of Cardiology. Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in gene expression are associated with switching to an autoprotected phenotype in response to environmental and physiological stress. Ubiquitous molecular chaperones from the heat shock protein (HSP) superfamily confer neuronal protection that can be blocked by antibodies. Recent research has focused on the interactions between the molecular sensors that affect the increased expression of neuroprotective HSPs above constitutive levels. An examination of the conditions under which the expression of heat shock protein 70 (Hsp70) was up regulated in a hypoxia and anoxia tolerant tropical species, the epaulette shark (Hemiscyllium ocellatum), revealed that up-regulation was dependent on exceeding a stimulus threshold for an oxidative stressor. While hypoxic-preconditioning confers neuroprotective changes, there was no increase in the level of Hsp70 indicating that its increased expression was not associated with achieving a neuroprotected state in response to hypoxia in the epaulette shark. Conversely, there was a significant increase in Hsp70 in response to anoxic-preconditioning, highlighting the presence of a stimulus threshold barrier and raising the possibility that, in this species, Hsp70 contributes to the neuroprotective response to extreme crises, such as oxidative stress. Interestingly, there was a synergistic effect of coincident stressors on Hsp70 expression, which was revealed when metabolic stress was superimposed upon oxidative stress. Brain energy charge was significantly lower when adenosine receptor blockade, provided by treatment with aminophylline, was present prior to the final anoxic episode, under these circumstances, the level of Hsp70 induced was significantly higher than in the pair-matched saline treated controls. An understanding of the molecular and metabolic basis for neuroprotective switches, which result in an up-regulation of neuroprotective Hsp70 expression in the brain, is needed so that intervention strategies can be devised to manage CNS pathologies and minimise damage caused by ischemia and trauma. In addition, the current findings indicate that measurements of HSP expression per se may provide a useful correlate of the level of neuroprotection achieved in the switch to an autoprotected phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetazolamide (Acz) is used at altitude to prevent acute mountain sickness, but its effect on exercise capacity under hypoxic conditions is uncertain. Nine healthy men completed this double-blind, randomized, crossover study. All subjects underwent incremental exercise to exhaustion with an inspired O-2 fraction of 0.13, hypoxic ventilatory responses, and hypercapnic ventilatory responses after Acz (500 mg twice daily for 5 doses) and placebo. Maximum power of 203 +/- 38 (SD) Won Acz was less than the placebo value of 225 +/- 40 W (P < 0.01). At peak exercise, arterialized capillary pH was lower and PO2 higher on Acz (P < 0.01). Ventilation was 118.6 +/- 20.0 l/min at the maximal power on Acz and 102.4 +/- 20.7 l/min at the same power on placebo (P < 0.02), and Borg score for leg fatigue was increased on Acz (P < 0.02), with no difference in Borg score for dyspnea. Hypercapnic ventilatory response on Acz was greater (P < 0.02), whereas hypoxic ventilatory response was unchanged. During hypoxic exercise, Acz reduced exercise capacity associated with increased perception of leg fatigue. Despite increased ventilation, dyspnea was not increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated extracellular concentrations of the neurotransmitter glutamate are neurotoxic and directly contribute to CNS damage as a result of ischemic pathologies. However, the main contributors to this uncontrolled rise in glutamate are still unconfirmed. It has been reported that the reversal of high-affinity glutamate transporters is a significant contributing factor. Conversely, it has also Peen observed that these transporters continue to take up glutamate, albeit at a reduced saturation concentration, under ischemic conditions. We sought to determine whether glutamate transporters continue to remove glutamate from the extracellular space under ischemic conditions by pharmacologically modulating the activity of high-affinity retinal glutamate transporters during simulated ischemia in vitro. Retinal glutamate transporter activity was significantly reduced under these ischemic conditions. The suppression of retinal glutamate transporter activity, with the protein kinase C inhibitor chelerythrine, significantly reduced ischemic glutamate uptake and enhanced retinal neurodegeneration. These findings imply a limited but protective role for retinal glutamate transporters under certain ischemic conditions, suggesting that pharmacological enhancement of high-affinity glutamate transporter activity may reduce tissue damage and loss of function resulting from toxic extracellular glutamate concentrations. (C) 2004 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The homeostasis of glutamate is critical to normal brain function; deficiencies in the regulation of extracellular glutamate are thought to be a major determinant of damage in hypoxic brains. Extracellular levels of glutamate are regulated mainly by plasmalemmal glutamate transporters. We have evaluated the distribution of the glutamate transporter GLAST and two splice variants of GLT-1 in the hypoxic neonatal pig brain using this as model of neonatal humans. In response to severe hypoxic insults, we observe a rapid loss of two glial glutamate transporters from specific brain regions, such as the CA1 region of the hippocampus, but not the dentate gyrus. The spatial distribution of loss accords with patterns of damage in these brains. Conversely, we demonstrate that hypoxia evokes the expression of a splice variant of GLT-1 in neurons. We suggest that this expression may be induced in response to elevated extracellular glutamate around these neurons, and that this splice variant may represent a useful marker for direct quantification of the extent of likely neuronal damage in hypoxic brains. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the relationship between brain natriuretic peptide (BNP) levels and viable myocardium and ischemic myocardium, regional scar and regional contractile function. Fifty-nine patients underwent dobutamine echocardiography and magnetic resonance imaging and resting BNP levels were determined. By magnetic resonance imaging, total extent of dysfunctional myocardium correlated strongest with BNP (r = 0.60, p < 0.0001). The extent of scar, viability and ischemia also correlated. At dobutamine echocardiography, a composite of dysfunctional and ischemic myocardium was the strongest correlate of BNP (r = 0.48, p < 0.0001), with less strong correlations by global parameters. The extent of dysfunctional myocardium, rather than its nature determines BNP levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Administration of human recombinant erythropoietin ( EPO) at time of acute ischemic renal injury ( IRI) inhibits apoptosis, enhances tubular epithelial regeneration, and promotes renal functional recovery. The present study aimed to determine whether darbepoetin-alfa ( DPO) exhibits comparable renoprotection to that afforded by EPO, whether pro or antiapoptotic Bcl-2 proteins are involved, and whether delayed administration of EPO or DPO 6 h following IRI ameliorates renal dysfunction. The model of IRI involved bilateral renal artery occlusion for 45 min in rats ( N = 4 per group), followed by reperfusion for 1-7 days. Controls were sham-operated. Rats were treated at time of ischemia or sham operation ( T0), or post-treated ( 6 h after the onset of reperfusion, T6) with EPO ( 5000 IU/kg), DPO ( 25 mu g/kg), or appropriate vehicle by intraperitoneal injection. Renal function, structure, and immunohistochemistry for Bcl-2, Bcl-XL, and Bax were analyzed. DPO or EPO at T0 significantly abrogated renal dysfunction in IRI animals ( serum creatinine for IRI 0.17 +/- 0.05mmol/l vs DPO-IRI 0.08 +/- 0.03mmol/l vs EPO-IRI 0.04 +/- 0.01mmol/l, P = 0.01). Delayed administration of DPO or EPO ( T6) also significantly abrogated subsequent renal dysfunction ( serum creatinine for IRI 0.17 +/- 0.05mmol/l vs DPO-IRI 0.06 +/- 0.01mmol/l vs EPO-IRI 0.03 +/- 0.03mmol/l, P = 0.01). There was also significantly decreased tissue injury ( apoptosis, P < 0.05), decreased proapoptotic Bax, and increased regenerative capacity, especially in the outer stripe of the outer medulla, with DPO or EPO at T0 or T6. These results reaffirm the potential clinical application of DPO and EPO as novel renoprotective agents for patients at risk of ischemic acute renal failure or after having sustained an ischemic renal insult.