125 resultados para hybrid method
em University of Queensland eSpace - Australia
Resumo:
Due to complex field/tissue interactions, high-field magnetic resonance (MR) images suffer significant image distortions that result in compromised diagnostic quality. A new method that attempts to remove these distortions is proposed in this paper and is based on the use of transceiver-phased arrays. The proposed system uses, in the examples presented herein, a shielded four-element transceive-phased array head coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both the images together, the image distortion can be reduced several fold. A combined hybrid method of moments (MoM)/finite element method (FEM) and finite-difference time-domain (FDTD) technique is proposed and used to elucidate the concept of the new method and to accurately evaluate the electromagnetic field (EMF) in a human head model. In addition, the proposed method is used in conjunction with the generalized auto-calibrating partially parallel acquisitions (GRAPPA) reconstruction technique to enable rapid imaging of the two scans. Simulation results reported herein for 11-T (470-MHz) brain imaging applications show that the new method with GRAPPA reconstruction theoretically results in improved image quality and that the proposed combined hybrid MoM/FEM and FDTD technique is. suitable for high-field magnetic resonance imaging (MRI) numerical analysis.
Resumo:
The numerical implementation of the complex image approach for the Green's function of a mixed-potential integralequation formulation is examined and is found to be limited to low values of k(0) rho (in this context k(0) rho = 2 pirho/ lambda(0), where rho is the distance between the source and the field points of the Green's function and lambda(0) is the free space wavelength). This is a clear limitation for problems of large dimension or high frequency where this limit is easily exceeded. This paper examines the various strategies and proposes a hybrid method whereby most of the above problems can be avoided. An efficient integral method that is valid for large k(0) rho is combined with the complex image method in order to take advantage of the relative merits of both schemes. It is found that a wide overlapping region exists between the two techniques allowing a very efficient and consistent approach for accurately calculating the Green's functions. In this paper, the method developed for the computation of the Green's function is used for planar structures containing both lossless and lossy media.
Resumo:
The ability to grow microscopic spherical birefringent crystals of vaterite, a calcium carbonate mineral, has allowed the development of an optical microrheometer based on optical tweezers. However, since these crystals are birefringent, and worse, are expected to have non-uniform birefringence, computational modeling of the microrheometer is a highly challenging task. Modeling the microrheometer - and optical tweezers in general - typically requires large numbers of repeated calculations for the same trapped particle. This places strong demands on the efficiency of computational methods used. While our usual method of choice for computational modelling of optical tweezers - the T-matrix method - meets this requirement of efficiency, it is restricted to homogeneous isotropic particles. General methods that can model complex structures such as the vaterite particles, such as finite-difference time-domain (FDTD) or finite-difference frequency-domain (FDFD) methods, are inefficient. Therefore, we have developed a hybrid FDFD/T-matrix method that combines the generality of volume-discretisation methods such as FDFD with the efficiency of the T-matrix method. We have used this hybrid method to calculate optical forces and torques on model vaterite spheres in optical traps. We present and compare the results of computational modelling and experimental measurements.
Resumo:
The reconstruction of power industries has brought fundamental changes to both power system operation and planning. This paper presents a new planning method using multi-objective optimization (MOOP) technique, as well as human knowledge, to expand the transmission network in open access schemes. The method starts with a candidate pool of feasible expansion plans. Consequent selection of the best candidates is carried out through a MOOP approach, of which multiple objectives are tackled simultaneously, aiming at integrating the market operation and planning as one unified process in context of deregulated system. Human knowledge has been applied in both stages to ensure the selection with practical engineering and management concerns. The expansion plan from MOOP is assessed by reliability criteria before it is finalized. The proposed method has been tested with the IEEE 14-bus system and relevant analyses and discussions have been presented.
Resumo:
This paper describes a hybrid numerical method for the design of asymmetric magnetic resonance imaging magnet systems. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. A new type of asymmetric magnet is proposed in this work. The asymmetric MRI magnet allows the diameter spherical imaging volume to be positioned close to one end of the magnet. The main advantages of making the magnet asymmetric include the potential to reduce the perception of claustrophobia for the patient, better access to the patient by attending physicians, and the potential for reduced peripheral nerve stimulation due to the gradient coil configuration. The results highlight that the method can be used to obtain an asymmetric MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1.2 m in length. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 1999 Academic Press.
Resumo:
In this paper, we assess the relative performance of the direct valuation method and industry multiplier models using 41 435 firm-quarter Value Line observations over an 11 year (1990–2000) period. Results from both pricingerror and return-prediction analyses indicate that direct valuation yields lower percentage pricing errors and greater return prediction ability than the forward price to aggregated forecasted earnings multiplier model. However, a simple hybrid combination of these two methods leads to more accurate intrinsic value estimates, compared to either method used in isolation. It would appear that fundamental analysis could benefit from using one approach as a check on the other.
Resumo:
Market-based transmission expansion planning gives information to investors on where is the most cost efficient place to invest and brings benefits to those who invest in this grid. However, both market issue and power system adequacy problems are system planers’ concern. In this paper, a hybrid probabilistic criterion of Expected Economical Loss (EEL) is proposed as an index to evaluate the systems’ overall expected economical losses during system operation in a competitive market. It stands on both investors’ and planner’s point of view and will further improves the traditional reliability cost. By applying EEL, it is possible for system planners to obtain a clear idea regarding the transmission network’s bottleneck and the amount of losses arises from this weak point. Sequentially, it enables planners to assess the worth of providing reliable services. Also, the EEL will contain valuable information for moneymen to undertake their investment. This index could truly reflect the random behaviors of power systems and uncertainties from electricity market. The performance of the EEL index is enhanced by applying Normalized Coefficient of Probability (NCP), so it can be utilized in large real power systems. A numerical example is carried out on IEEE Reliability Test System (RTS), which will show how the EEL can predict the current system bottleneck under future operational conditions and how to use EEL as one of planning objectives to determine future optimal plans. A well-known simulation method, Monte Carlo simulation, is employed to achieve the probabilistic characteristic of electricity market and Genetic Algorithms (GAs) is used as a multi-objective optimization tool.
Resumo:
Aim: Unless specifically treated (glucocorticoids in low doses), Familial Hyperaldosteronism Type I(FH-I) may result in early death from stroke. We report the successful application of a rapid, polymerase chain reaction (PCR)-based method of detecting the 'hybrid' 11 beta-hydroxylase (11 beta-OHase)/aldosterone synthase (AS) gene as a screening test for FH-I. Methods: 'Long-PCR' was used to amplify, concurrently, a 4 kb fragment of AS gene (both primers AS-specific) and a 4 kb fragment of the hybrid gene (5' primer 11 beta-OHase-specific, 3'primer AS-specific) from DNA extracted from blood either collected locally or transported from elsewhere. Sample collection and transport were straightforward. This 4 kb fragment contains all the currently recognised hybrid gene 'crossover' points. Results: Within a single family, long-PCR identified all 21 individuals known to have FH-I. Hypertension was corrected in all 11 treated with glucocorticoids. Nine with normal blood pressure are being closely followed for development of hypertension. Long-PCR cord blood analysis excluded FH-I in three neonates born to affected individuals. Long-PCR newly identified two other affected families: (1) a female (60 years) with a personal and family history of stroke and her normotensive daughter (40 years), and (2) a female (51 years) previously treated for primary aldosteronism with amiloride, her two hypertensive sons (14 and 16 years) and her hypertensive mother (78 years). No false negative or false positive results have yet been encountered. At least seven other centres have successfully performed this test. Conclusion: Long-PCR is a reliable method of screening individuals of all ages for FH-I.
Resumo:
This paper describes a hybrid numerical method of an inverse approach to the design of compact magnetic resonance imaging magnets. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first, kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. The emphasis of this work is on the optimal design of short MRI magnets. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric MRI magnets as well as asymmetric magnets. The results highlight that the method can be used to obtain a compact MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1 m in length, significantly shorter than current designs. Viable asymmetric magnet designs, in which the edge of the homogeneous region is very close to one end of the magnet system are also presented. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 2000 American Association of Physicists in Medicine. [S0094-2405(00)00303-5].
Resumo:
A hybrid formulation for coupled pore fluid-solid deformation problems is proposed. The scheme is a hybrid in the sense that we use a vertex centered finite volume formulation for the analysis of the pore fluid and a particle method for the solid in our model. The pore fluid formally occupies the same space as the solid particles. The size of the particles is not necessarily equal to the physical size of materials. A finite volume mesh for the pore fluid flow is generated by Delaunay triangulation. Each triangle possesses an initial porosity. Changes of the porosity are specified by the translations of the mass centers of particles. Net pore pressure gradients are applied to the particle centers and are considered in the particle momentum balance. The potential of our model is illustrated by means of a simulation of coupled fracture and fluid flow developed in porous rock under biaxial compression condition.
Resumo:
An inverse, current density mapping (CDM) method has been developed for the design of elliptical cross-section MRI magnets. The method provides a rapid prototyping system for unusual magnet designs, as it generates a 3D current density in response to a set of target field and geometric constraints. The emphasis of this work is on the investigation of new elliptical coil structures for clinical MRI magnets. The effect of the elliptical aspect ratio on magnet performance is investigated. Viable designs are generated for symmetric, asymmetric and open architecture elliptical magnets using the new method. Clinically relevant attributes such as reduced stray field and large homogeneous regions relative to total magnet length are included in the design process and investigated in detail. The preliminary magnet designs have several novel features.
Resumo:
A hybrid zone between the grasshoppers Chorthippus brunneus and C. jacobsi (Orthoptera: Acrididae) in northern Spain has been analyzed for variation in morphology and ecology. These species are readily distinguished by the number of stridulatory pegs on the hind femur. Both sexes are fully winged and inhabit disturbed habitats throughout the study area. We develop a maximum-likelihood approach to fitting a two-dimensional cline to geographical variation in quantitative traits and for estimating associations of population mean with local habitat. This method reveals a cline in peg number approximately 30 km south of the Picos de Europa Mountains that shows substantial deviations in population mean compared with the expectations of simple tension zone models. The inclusion of variation in local vegetation in the model explains a significant proportion of the residual variation in peg number, indicating that habitat-genotype associations contribute to the observed spatial pattern. However, this association is weak, and a number of populations continue to show strong deviations in mean even after habitat is included in the final model. These outliers may be the result of long-distance colonization of sites distant from the cline center or may be due to a patchy pattern of initial contact during postglacial expansion. As well as contrasting with the smooth hybrid zones described for Chorthippus parallelus, this situation also contrasts with the mosaic hybrid zones observed in Gryllus crickets and in parts of the hybrid zone between Bombina toad species, where habitat-genotype associations account for substantial amounts of among-site variation.
Resumo:
A supersweet sweet corn hybrid, Pacific H5, was planted at weekly intervals (P-1 to P-5) in spring in South-Eastern Queensland. All plantings were harvested at the same time resulting in immature seed for the last planting (P-5). The seed was handled by three methods: manual harvest and processing (M-1), manual harvest and mechanical processing (M-2) and mechanical harvest and processing (M-3), and later graded into three sizes (small, medium and large). After eight months storage at 12-14degreesC, seed was maintained at 30degreesC with bimonthly monitoring of germination for fourteen months and seed damage at the end of this period. Seed quality was greatest for M-1 and was reduced by mechanical processing but not by mechanical harvesting. Large and medium seed had higher germination due to greater storage reserves but also more seed damage during mechanical processing. Immature seed from premature harvest (P-5) had poor quality especially when processed mechanically and reinforced the need for harvested seed to be physiologically mature.
Resumo:
This paper highlights the importance of design expertise, for designing liquid retaining structures, including subjective judgments and professional experience. Design of liquid retaining structures has special features different from the others. Being more vulnerable to corrosion problem, they have stringent requirements against serviceability limit state of crack. It is the premise of the study to transferring expert knowledge in a computerized blackboard system. Hybrid knowledge representation schemes, including production rules, object-oriented programming, and procedural methods, are employed to express engineering heuristics and standard design knowledge during the development of the knowledge-based system (KBS) for design of liquid retaining structures. This approach renders it possible to take advantages of the characteristics of each method. The system can provide the user with advice on preliminary design, loading specification, optimized configuration selection and detailed design analysis of liquid retaining structure. It would be beneficial to the field of retaining structure design by focusing on the acquisition and organization of expert knowledge through the development of recent artificial intelligence technology. (C) 2003 Elsevier Ltd. All rights reserved.