39 resultados para humeral skeletal anatomy
em University of Queensland eSpace - Australia
Resumo:
The olive ridley is the most abundant seaturtle species in the world but little is known of the demography of this species. We used skeletochronological data on humerus diameter growth changes to estimate the age of North Pacific olive ridley seaturtles caught incidentally by pelagic longline fisheries operating near Hawaii and from dead turtles washed ashore on the main Hawaiian Islands. Two age estimation methods [ranking, correction factor (CF)] were used and yielded age estimates ranging from 5 to 38 and 7 to 24 years, respectively. Rank age-estimates are highly correlated (r = 0.93) with straight carapace length (SCL), CF age estimates are not (r = 0.62). We consider the CF age-estimates as biologically more plausible because of the disassociation of age and size. Using the CF age-estimates, we then estimate the median age at sexual maturity to be around 13 years old (mean carapace size c. 60 cm SCL) and found that somatic growth was negligible by 15 years of age. The expected age-specific growth rate function derived using numerical differentiation suggests at least one juvenile growth spurt at about 10–12 years of age when maximum age-specific growth rates, c. 5 cm SCL year−1, are apparent.
Resumo:
Abstract: Among the vertebrates, crocodilians have the most complex anatomy of the heart and outflow channels. Their cardiovascular anatomy may also be the most functionally sophisticated, combining as it does the best features of both reptilian and mammalian (and avian) systems. The puzzlingly complex "plumbing" of crocodilians has fascinated anatomists and physiologists for a very long time, the first paper being that by Panizza (1833). Gradually, with the application of successive techniques of investigation as they became available, its functional significance has become reasonably clear, and the complexity is now revealed as a cardiovascular system of considerable elegance. In this paper I will review the main anatomical features of the heart and outflow channels, discuss what is known about the way they work, and speculate about the probable functional significance.
Resumo:
To aid in the development of artificial diets for mass rearing parasitioids, we investigated the anatomical changes in the digestive tract during feeding behaviour of larval Trichogramma australicum (Hymenoptera: Trichogrammatidae). Larvae begin to feed immediately upon eclosion and feed continuously for 4 h until replete. Feeding is characterised by rhythmic muscle contractions (ca 1 per s) of the pharynx. Contractions of the pharyngeal dilator muscles lift the roof of the lobe-shaped pharynx away from the floor of the chamber, opening the mouth and pumping food into the pharyngeal cavity. Another muscle contraction occurs about 0.5 s later, forcing the bolus of food through the oesophagus and into the midgut. The junction of fore- and midgut is marked by a cardiac valve. The midgut occupies most of the body cavity and is lined with highly vacuolated, flattened cells and a dispersed layer of muscle cells. In the centre of the midgut, food has the appearance of host egg contents. Food near the midgut epithelial cells has a finer, more homogeneous appearance. This change in the physical properties of the gut contents is indicative of the digestion process. In the prepupa, where digestion is complete, the entire gut contents have this appearance. After eclosion, the vitelline membrane remains attached to the posterior end of the larva. We believe this attachment to be adaptive in two ways: (1) to anchor the larva against the movements of its anterior portion, thereby increasing the efficiency of foraging within the egg, and (2) to prevent a free-floating membrane from clogging the mouthparts during ingestion. 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Mechanically skinned skeletal muscle fibres from rat and toad were exposed to the permeabilizing agents beta-escin and saponin. The effects of these agents on the sealed transverse tubular system (t-system) and sarcoplasmic reticulum (SR) were examined by looking at changes in the magnitude of the force responses to t-system depolarization, the time course of the fluorescence of fura-2 trapped in the sealed t-system, and changes in the magnitude of caffeine-induced contractures following SR loading with Ca2+ under defined conditions. In the presence of 2 mu g ml(-1) beta-escin and saponin, the response to t-system depolarization was not completely abolished, decreasing to a plateau, and a large proportion of fura-2 remained in the sealed t-system. At 10 mu g ml(-1), both agents abolished the ability of both rat and toad preparations to respond to t-system depolarization after 3 min of exposure, but a significant amount of fura-2 remained in sealed t-tubules even after exposure to 100 mu g ml(-1) beta-escin and saponin for 10 min. beta-Escin took longer than saponin to reduce the t-system depolarizations and fura-2 content of the sealed t-system to a similar level. The ability of the SR to load Ca2+ was reduced to a lower level after treatment with beta-escin than saponin. This direct effect on the SR occurred at much lower concentrations for rat (2 mu g ml(-1) beta-escin and 10 mu g ml(-1) saponin) than toad (10 mu g ml(-1) beta-escin and 150 mu g ml(-1) saponin). The reverse order in sensitivities to beta-escin and saponin of t-system and SR membranes indicates that the mechanisms of action of beta-escin and saponin are different in the two types of membrane. In conclusion, this study shows that: (1) beta-escin has a milder action on the surface membrane than saponin; (2) beta-escin is a more potent modifier of SR function; (3) simple permeabilization of membranes is not sufficient to explain the effects of beta-escin and saponin on muscle membranes; and (4) the t-system network within muscle fibres is not a homogeneous compartment.
Resumo:
In the first of three experiments, 11 participants generated pronation and supination movements of the forearm, in time with an auditory metronome. The metronome frequency was increased in eight steps (0.25 Hz) from a base frequency of 1.75 Hz. On alternating trials, participants were required to coordinate either maximum pronation or maximum supination with each beat of the metronome. In each block of trials, the axis of rotation was either coincident with the long axis of the forearm, above this axis, or below this axis. The stability of the pronate-on-the-beat pattern, as indexed by the number of pattern changes, and the time of onset of pattern change, was greatest when the axis of rotation of the movement was below the long axis of the forearm. In contrast, the stability of the supinate-on-the-beat pattern was greatest when the axis of rotation of the movement was above the long axis of the forearm. In a second experiment, we examined how changes in the position of the axis of rotation alter the activation patterns of muscles that contribute to pronation and supination of the forearm. Variations in the relative dominance of the pronation and supination phases of the movement cycle across conditions were accounted for primarily by changes in the activation profile of flexor carpi radialis (FCR) and extensor carpi radialis longus (ECR). In the Final experiment we examined how these constraints impact upon the stability of bimanual coordination. Thirty-two participants were assigned at random to one of four conditions, each of which combined an axis of rotation configuration (bottom or top) for each limb. The participants generated both inphase (both limbs pronating simultaneously, and supinating simultaneously) and antiphase (left limb pronating and right limb supinating simultaneously, and vice versa) patterns of coordination. When the position of the axis of rotation was equivalent for the left and the right limb, transitions from antiphase to inphase patterns of coordination were Frequently observed. In marked contrast, when the position of the axis of rotation for the left and right limb was contradistinct, transitions From inphase to antiphase patterns of coordination occurred. The results demonstrated that when movements are performed in an appropriate mechanical context, inphase patterns of coordination are less stable than antiphase patterns.
Resumo:
1. The role of myoplasmic [Mg2+] on Ca2+ release from the sarcoplasmic reticulum (SR) was examined in the two major types of crustacean muscle fibres, the tonic, long sarcomere fibres and the phasic, short sarcomere fibres of the fresh mater decapod crustacean Cherax: destructor (yabby) and in the fast-twitch rat muscle fibres using the mechanically skinned muscle fibre preparation. 2. A robust Ca2+-induced Ca2+-release (CICR) mechanism was present in both long and short sarcomere fibres and 1 mM Mg2+ exerted a strong inhibitory action on the XR Ca2+ release in both fibre types. 3. The XR displayed different properties with respect to Ca2+ loading in the long and the short sarcomere fibres and marked functional differences were identified with respect to Mg2+ inhibition between the two crustacean fibre types. Thus, in long sarcomere fibres, the submaximally loaded XR was able to release Ca2+ when [Mg2+] was lowered from 1 to 0.01 mw in the presence of 8 mM ATP(total) and in the virtual absence of Ca2+ (< 5 nM) even when the CICR was suppressed. In contrast, negligible Ca2+ was released from the submaximally loaded SR of short sarcomere yabby fibres when [Mg2+] was lowered from 1. to 0.01 mM under the same conditions as for the long sarcomere fibres. Nevertheless, the rate of XR Ca2+ release in short sarcomere fibres increased markedly when [Mg2+] was lowered in the presence of [Ca2+] approaching the normal resting levels (50-100 nM). 4. Rat fibres were able to release SR Ca2+ at a faster rate than the long sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0.01 mM in the virtual absence of Ca2+ but, unlike with yabby fibres, the net rate of Ca2+ release was actually increased for conditions that were considerably less favourable to CICR. 5. In summary it is concluded that crustacean skeletal muscles have more that one functional type of Ca2+-release channels, that these channels display properties that are intermediate between those of mammalian skeletal and cardiac isoforms, that the inhibition exerted by Mg2+ at rest on the crustacean SR Ca2+-release channels must be removed during excitation-contraction coupling and that, unlike in crustacean fibres, CICR cannot play the major role in the activation of XR Ca2+-release channels in the rat skeletal muscle.
Resumo:
The volume of the extracellular compartment (tubular system) within intact muscle fibres from cane toad and rat was measured under various conditions using confocal microscopy. Under physiological conditions at rest, the fractional volume of the tubular system (t-sys(Vol)) was 1.38 +/- 0.09% (n = 17),1.41 +/- 0.09% (n = 12) and 0.83 +/- 0.07% (n = 12) of the total fibre volume in the twitch fibres from toad iliofibularis muscle, rat extensor digitorum longus muscle and rat soleus muscle, respectively. In toad muscle fibres, the t-sys(Vol) decreased by 30% when the tubular system was fully depolarized and decreased by 15% when membrane cholesterol was depleted from the tubular system with methyl-beta-cyclodextrin but did not change as the sarcomere length was changed from 1.93 to 3.30 mum. There was also an increase by 30% and a decrease by 25% in t-sys(Vol) when toad fibres were equilibrated in solutions that were 2.5-fold hypertonic and 50% hypotonic, respectively. When the changes in total fibre volume were taken into consideration, the t-sys(Vol) expressed as a percentage of the isotonic fibre volume did actually decrease as tonicity increased, revealing that the tubular system in intact fibres cannot be compressed below 0.9% of the isotonic fibre volume. The results can be explained in terms of forces acting at the level of the tubular wall. These observations have important physiological implications showing that the tubular system is a dynamic membrane structure capable of changing its volume in response to the membrane potential, cholesterol depletion and osmotic stress but not when the sarcomere length is changed in resting muscle.
Resumo:
Confocal imaging of impermeant fluorescent dyes trapped in the tubular (t-) system of skeletal muscle fibres of rat and cane toad was used to examine changes in the morphology of the t-system upon mechanical skinning, the time course of dye loss from the sealed t-systern in mechanically skinned fibres and the influence of rapid application and removal of glycerol on the morphology of the sealed t-system. In contrast to intact fibres, which have a t-systern open to the outside, the sealed t-systern of toad mechanically skinned fibres consistently displayed local swellings (vesicles). The occurrence of vesicles in the sealed t-system of rat-skinned fibres was infrequent. Application and removal of 200-400 mM glycerol to the sealed t-system did not produce any obvious changes in its morphology. The dyes fluo-3, fura-2 and Oregon green 488 were lost from the sealed t-system of toad fibres at different rates suggesting that the mechanism of organic anion transport across the tubular wall was not by indiscriminate bulk transport. The rate of fluo-3 and fura-2 loss from the sealed t-system of rat fibres was greater in rat than in toad fibres and could be explained by differences in surface area: volume ratio of the t-system in the two fibre types. Based on the results presented here and on other results from this laboratory, an explanation is given for the formation of numerous vesicles in toad-skinned fibres and lack of vesicle formation in rat-skinned fibres. This explanation can also help with better understanding the mechanism responsible for vacuole formation in intact fibres. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Examination of store-operated Ca2+ entry (SOC) in single, mechanically skinned skeletal muscle cells by confocal microscopy shows that the inositol 1,4,5-trisphosphate (IP3) receptor acts as a sarcoplasmic reticulum [Ca2+] sensor and mediates SOC by physical coupling without playing a key role in Ca2+ release from internal stores, as is the case with various cell types in which SOC was investigated previously. The results have broad implications for understanding the mechanism of SOC that is essential for cell function in general and muscle function in particular. Moreover, the study ascribes an important role to the IN receptors in skeletal muscle, the role of which with respect to Ca2+ homeostasis was ill defined until now.
Resumo:
A converging body of literature over the last 50 years has implicated the amygdala in assigning emotional significance or value to sensory information. In particular, the amygdala has been shown to be an essential component of the circuitry underlying fear-related responses. Disorders in the processing of fear-related information are likely to be the underlying cause of some anxiety disorders in humans such as posttraumatic stress. The amygdaloid complex is a group of more than 10 nuclei that are located in the midtemporal lobe. These nuclei can be distinguished both on cytoarchitectonic and connectional grounds. Anatomical tract tracing studies have shown that these nuclei have extensive intranuclear and internuclear connections. The afferent and efferent connections of the amygdala have also been mapped in detail, showing that the amygdaloid complex has extensive connections with cortical and subcortical regions. Analysis of fear conditioning in rats has suggested that long-term synaptic plasticity of inputs to the amygdala underlies the acquisition and perhaps storage of the fear memory. In agreement with this proposal, synaptic plasticity has been demonstrated at synapses in the amygdala in both in vitro and in vivo studies. In this review, we examine the anatomical and physiological substrates proposed to underlie amygdala function.
Resumo:
A method was developed that allows conversion of changes in maximum Ca2+-dependent fluorescence of a fixed amount of fluo-3 into volume changes of the fluo-3-containing solution. This method was then applied to investigate by confocal microscopy the osmotic properties of the sealed tubular (t-) system of toad and rat mechanically skinned fibers in which a certain amount Of fluo-3 was trapped. When the osmolality of the myoplasmic environment was altered by simple dilution or addition of sucrose within the range 190-638 mosmol kg(-1), the sealed t-system of toad fibers behaved almost like an ideal osmometer, changing its volume inverse proportionally to osmolality However, increasing the osmolality above 638 to 2,550 mosmol kg(-1) caused hardly any change in t-system volume. In myoplasmic solutions made hypotonic to 128 mosmol kg(-1), a loss of Ca2+ from the sealed t-system of toad fibers Occurred, presumably through either stretch-activated cationic channels or store-operated Ca2+ channels. In contrast to the behavior of the t-system in toad fibers, the volume of the sealed t-system of rat fibers changed little (by