54 resultados para historical of malaria
em University of Queensland eSpace - Australia
Resumo:
Objective To assist with strategic planning for the eradication,of malaria in Henan Province, China, which reached the consolidation phase of malaria control in 1992, when only 318 malaria cases were reported, Methods We conducted a prospective two-year study of the costs for Henan's malaria control programme. We used a cost model that could also be applied to other malaria programmes in-mainland China, and analysed the cost of the three components of Henan's malaria programme. suspected malaria case management,, vector surveillance,,and population blood surveys. Primary cost data were collected from the government, and data on suspected malaria patient's were collected in two malaria counties (population 2 093 100). We enlisted the help of 260 village doctors. in six-townships or former communities (population 247 762), and studied all 12 315 reported cases of suspected malaria in catchment areas in 1994 and 1995. Findings The average-annual government investment in malaria control was estimated to be US$ 111 516 (case-management 59%; active blood surveys 25%;vector surveillance 12%; and contingencies and special projects 4%). The average cost (direct and indirect) for-patients seeking-treatment for suspected malaria was US$ 3.48, equivalent,to 10 days' income for rural residents. Each suspected malaria case cost the government an, average of US$ 0.78. Conclusion Further cuts in government funding will increase future costs, when epidemic malaria returns; investment in malaria control should therefore continue at least at current levels,of US$ 0.03 per person a risk.
Resumo:
Although most of the Papua New Guinea highlands are too high for stable malaria transmission, local epidemics are a regular feature of the region. Few detailed descriptions of such epidemics are available, however. We describe the investigation of a malaria epidemic in the Obura Valley, Eastern Highlands Province, Papua New Guinea. Of the 244 samples examined by microscopy, 6.6% were positive for Plasmodium falciparum only, 9.4% were positive for Plasmodium vivax only, and 1.2% were mixed infections. MSP2 and MSP3alpha genotyping and AMA1 sequencing were used to determine the genetic variation present in a sample of P. falciparum and P. vivax infections. The P. vivax infections were found to be genetically highly diverse. In contrast, all P. falciparum samples were of a single genotype. This striking difference in genetic diversity suggests endemic, low-level local transmission for P. vivax but an outside introduction of P. falciparum as the most likely source of the epidemic.
Resumo:
Malaria control strategies are more likely to be successful if groups at high risk can be accurately predicted. Given that mosquitoes have an obligate aquatic phase we were interested in determining how vector larval abundance relates to the spatial distribution of human malaria infection. We examined the relationship between malaria parasite prevalence and distance from vector larval habitat, and vector larval abundance and distance from human habitation, in separate studies in rural, low-endemic areas of the Philippines. Parasite prevalence among symptomatic patients was significantly higher among those living in proximity ( less than or equal to 50 m) to potential larval habitats of the major vector, Anopheles flavirostris (adjusted odds ratio [AOR] 2.64, P = 0.02 and AOR 3.43, P = 0.04). A larval survey of A. flavirostris revealed a higher density of early and late instars near human habitation (adjusted P < 0.05). The results suggest that larvae are associated with human habitation, thereby reinforcing malaria risk in people living close to larval habitats. This has implications for understanding the interaction between vectors, hosts, and parasites, and the potential for success of localized malaria control measures.
Resumo:
Serum taken from mice immune to malaria as a result of infection and drug cure, or from mice immunized with a recombinant form of the merozoite surface protein, MSP1, can provide passive protection of recipient mice against the lethal parasite, Plasmodium yoelii YM. However, recipients of MSP1-immune serum go on to develop long-term immunity, whereas recipients of serum from mice naturally immune to malaria rapidly lose their resistance to infection. We demonstrate that 'infection/cure' serum suppresses the development of both antibody and cell-mediated parasite-specific responses in recipients, whereas these develop in recipients of MSP1-specific antibodies. These data have profound implications for our understanding of the development of malaria immunity in babies who passively acquire antibodies from their mothers.
Resumo:
A recent malaria epidemic in the Menoreh Hills of Central Java has increased concern about the re-emergence of endemic malaria on Java, which threatens the island's 120 million residents. A 28-day, in-vivo test of the efficacy of treatment of malaria with antimalarial drugs was conducted among 16 7 villagers in the Menoreh Hills. The treatments investigated, chloroquine (CQ) and sulfadoxine pyrimethamine (SP), constitute, respectively, the first- and second-line treatments for uncomplicated malaria in Indonesia. The prevalence of malaria among 1389 residents screened prior to enrollment was 33%. Treatment outcomes were assessed by microscopical diagnoses, PCR-based confirmation of the diagnoses, measurement of the whole-blood concentrations of CQ and desethylchloroquine (DCQ), and identification of the Plasmodium falciparum genotypes. The 28-day cumulative incidences of therapeutic failure for CQ and SP were, respectively, 47% (N = 36) and 22% (N = 50) in the treatment of P. falciparum, and 18% (N = 77) and 67% (N = 6) in the treatment of P. vivax. Chloroquine was thus an ineffective therapy for P. falciparum malaria, and the presence of CQ-resistant P. vivax and SP-resistant P. falciparum will further compromise efforts to control resurgent malaria on Java.
Resumo:
To determine which species and populations of Anopheles transmit malaria in any given situation, immunological assays for malaria sporozoite antigen can replace traditional microscopical examination of freshly dissected Anopheles. We developed a wicking assay for use with mosquitoes that identifies the presence or absence of specific peptide epitopes of circumsporozoite (CS) protein of Plasmodium falciparum and two strains of Plasmodium vivax (variants 210 and 247). The resulting assay (VecTest(TM) Malaria) is a rapid, one-step procedure using a 'dipstick' test strip capable of detecting and distinguishing between P. falciparum and P. vivax infections in mosquitoes. The objective of the present study was to test the efficacy, sensitivity, stability and field-user acceptability of this wicking dipstick assay. In collaboration with 16 test centres world-wide, we evaluated more than 40 000 units of this assay, comparing it to the standard CS ELISA. The 'VecTest(TM) Malaria' was found to show 92% sensitivity and 98.1% specificity, with 97.8% accuracy overall. In accelerated storage tests, the dipsticks remained stable for >15 weeks in dry conditions up to 45degreesC and in humid conditions up to 37degreesC. Evidently, this quick and easy dipstick test performs at an acceptable level of reliability and offers practical advantages for field workers needing to make rapid surveys of malaria vectors.
Resumo:
Background The ability of T cells, acting independently of antibodies, to control malaria parasite growth in people has not been defined. If such cell-mediated immunity was shown to be effective, an additional vaccine strategy could be pursued. Our aim was to ascertain whether or not development of cell-mediated immunity to Plasmodium falciparum blood-stage infection could be induced in human beings by exposure to malaria parasites in very low density. Methods We enrolled five volunteers from the staff at our research institute who had never had malaria. We used a cryopreserved inoculum of red cells infected with P falciparum strain 3D7 to give them repeated subclinical infections of malaria that we then cured early with drugs, to induce cell-mediated immune responses. We tested for development of immunity by measurement of parasite concentrations in the blood of volunteers by PCR of the multicopy gene STEVOR and by following up the volunteers clinically, and by measuring antibody and cellular immune responses to the parasite. Findings After challenge and a extended period without drug cure, volunteers were protected against malaria as indicated by absence of parasites or parasite DNA in the blood, and absence of clinical symptoms. Immunity was characterised by absence of detectable antibodies that bind the parasite or infected red cells, but by the presence of a proliferative T-cell response, involving CD4+ and CD8+ T cells, a cytokine response, consisting of interferon gamma but not interleukin 4 or interleukin 10, induction of high concentrations of nitric oxide synthase activity in peripheral blood mononuclear cells, and a drop in the number of peripheral natural killer T cells. Interpretation People can be protected against the erythrocytic stage of malaria by a strong cell-mediated immune response, in the absence of detectable parasite-specific antibodies, suggesting an additional strategy for development of a malaria vaccine.
Resumo:
Tafenoquine is an 8-aminoquiniline related to primaquine with preclinical activity against a range of malaria species. We treated two acute cases of vivax malaria with tafenoquine (800 mg over three days) atone, instead of conventional chloroquine (1500 mg over three days) and primaquine (420 mg over 14 days). In addition to the convenience of this regimen, the rapid parasite clearances observed, coupled with a good clinical response and lack of recrudescence or relapse, indicate that further investigation of tafenoquine in the treatment of vivax malaria is warranted. (C) 2004 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.