53 resultados para histone acetyltransferase

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adult mammalian brain maintains populations of neural stem cells within discrete proliferative zones. Understanding of the molecular mechanisms regulating adult neural stem cell function is limited. Here, we show that MYST family histone acetyltransferase Querkopf (Qkf, Myst4, Morf)-deficient mice have cumulative defects in adult neurogenesis in vivo, resulting in declining numbers of olfactory bulb interneurons, a population of neurons produced in large numbers during adulthood. Qkf-deficient mice have fewer neural stem cells and fewer migrating neuroblasts in the rostral migratory stream. Qkf gene expression is strong in the neurogenic subventricular zone. A population enriched in multipotent cells can be isolated from this region on the basis of Qkf gene expression. Neural stem cells/progenitor cells isolated from Qkf mutant mice exhibited a reduced self-renewal capacity and a reduced ability to produce differentiated neurons. Together, our data show that Qkf is essential for normal adult neurogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human N-acetyltransferase type 1 (NAT1) catalyses the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Despite wide inter-individual variability in activity, historically, NAT1 was considered to be monomorphic in nature. However, recent reports of allelic variation at the NAT1 locus suggest that it may be a polymorphically expressed enzyme. In the present study, peripheral blood mononuclear cell NAT1 activity in 85 individuals was found to be bimodally distributed with approximately 8% of the population being slow acetylators. Subsequent sequencing of the individuals having slow acetylator status showed all to have either a (CT)-T-190 or G(560)A base substitution located in the protein encoding region of the NAT1 gene. The (CT)-T-190 base substitution changed a highly conserved Arg(64), which others have shown to be essential for fully functional NAT1 protein. The (CT)-T-190 mutation has not been reported previously and we have named it NAT1*17. The G(560)A mutation is associated with the base substitutions previously observed in the NAT1*10 allele and this variant (NAT1*14) encodes for a protein with reduced acetylation capacity. A novel method using linear PCR and dideoxy terminators was developed for the detection of NAT1*14 and NAT1*17. Neither of these variants was found in the rapid acetylator population. We conclude that both the (CT)-T-190 (NAT1*17) and G(560)A (NAT1*14) NAT1 structural variants are involved in a distinct NAT1 polymorphism. Because NAT1 can bioactivate several carcinogens, this polymorphism may have implications for cancer risk in individual subjects. (C) 1998 Chapman & Hall Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arylamine N-acetyltransferase-1 (NAT1) is a polymorphically expressed enzyme that is widely distributed throughout the body. In the present study, we provide evidence for substrate-dependent regulation of this enzyme. Human peripheral blood mononuclear cells cultured in medium supplemented with p-aminobenzoic acid (PABA; 6 mu M) for 24 h showed a significant decrease (50-80%) in NAT1 activity. The loss of activity was concentration-dependent (EC50 similar to 2 mu M) and selective because PABA had no effect on the activity of constitutively expressed lactate dehydrogenase or aspartate aminotransferase. PABA also induced down-regulation of NAT1 activity in several human cell lines grown at confluence. Substrate-dependent downregulation was not restricted to PABA. Addition of other NAT1 substrates, such as p-aminosalicylic acid, ethyl-p-aminobenzoate, or p-aminophenol to peripheral blood mononuclear cells in culture also resulted in significant (P < .05) decreases in NAT1 activity. However, addition of the NAT2-selective substrates sulfamethazine, dapsone, or procainamide did not alter NAT1 activity. Western blot analysis using a NAT1-specific antibody showed that the loss of NAT1 activity was associated with a parallel reduction in the amount of NAT1 protein (r(2) = 0.95). Arylamines that did not decrease NAT1 activity did not alter NAT1 protein levels. Semiquantitative reverse transcriptase polymerase chain reaction of mRNA isolated from treated and untreated cells revealed no effect of PABA on NAT1 mRNA levels. We conclude that NAT1 can be down-regulated by arylamines that are themselves NAT1 substrates. Because NAT1 is involved in the detoxification/activation of various drugs and carcinogens, substrate-dependent regulation may have important consequences with regard to drug toxicity and cancer risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human N-acetyltransferase 1 (NAT1) is a widely distributed enzyme that catalyses the acetylation of arylamine and hydrazine drugs as well as several known carcinogens, and so its levels in the body may have toxicological importance with regard to drug toxicity and cancer risk. Recently, we showed that p-aminobenzoic acid (PABA) was able to down-regulate human NAT1 in cultured cells, but the exact mechanism by which PABA acts remains unclear. In the present study, we investigated the possibility that PABA-induced down-regulation involves its metabolism to N-OH-PABA, since N-OH-AAF functions as an irreversible inhibitor of hamster and rat NAT1. We show here that N-OH-PABA irreversibly inactivates human NAT1 both in cultured cells and cell cytosols in a time- and concentration-dependent manner. Maximal inactivation in cultured cells occurred within 4 hr of treatment, with a concentration of 30 muM reducing activity by 60 +/- 7%. Dialysis studies showed that inactivation was irreversible, and cofactor (acetyl coenzyme A) but not substrate (PABA) completely protected against inactivation, indicating involvement of the cofactor-binding site. In agreement with these data, kinetic studies revealed a 4-fold increase in cofactor K-m, but no change in substrate K-m for N-OH-PABA-treated cytosols compared to control. We conclude that N-OH-PABA decreases NAT1 activity by a direct interaction with the enzyme and appears to be a result of covalent modification at the cofactor-binding site. This is in contrast to our findings for PABA, which appears to reduce NAT1 activity by down-regulating the enzyme, leading to a decrease in NAT1 protein content. BIOCHEM PHARMACOL 60;12: 1829-1836, 2000. (C) 2000 Elsevier Science Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human N-acetyltransferase Type I (NAT1) catalyses the acetylation of many aromatic amine and hydrazine compounds and it has been implicated in the catabolism of folic acid. The enzyme is widely expressed in the body, although there are considerable differences in the level of activity between tissues. A search of the mRNA databases revealed the presence of several NAT1 transcripts in human tissue that appear to be derived from different promoters. Because little is known about NAT1 gene regulation, the present study was undertaken to characterize one of the putative promoter sequences of the NAT1 gene located just upstream of the coding region. We show with reverse-transcriptase PCR that mRNA transcribed from this promoter (Promoter 1) is present in a variety of human cell-lines, but not in quiescent peripheral blood mononuclear cells. Using deletion mutant constructs, we identified a 20 bp sequence located 245 bases upstream of the translation start site which was sufficient for basal NAT1 expression. It comprised an AP-1 (activator protein 1)-binding site, flanked on either side by a TCATT motif. Mutational analysis showed that the AP-1 site and the 3' TCATT sequence were necessary for gene expression, whereas the 5' TCATT appeared to attenuate promoter activity. Electromobility shift assays revealed two specific bands made up by complexes of c-Fos/Fra, c-Jun, YY-1 (Yin and Yang 1) and possibly Oct-1. PMA treatment enhanced expression from the NAT1 promoter via the AP-1-binding site. Furthermore, in peripheral blood mononuclear cells, PMA increased endogenous NAT1 activity and induced mRNA expression from Promoter I, suggesting that it is functional in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many drugs and chemicals found in the environment are either detoxified by N-acetyltransferase 1 (NAT1, EC 2.3.1.5) and eliminated from the body or bioactivated to metabolites that have the potential to cause toxicity and/or cancer. NAT1 activity in the body is regulated by genetic polymorphisms as well as environmental factors such as substrate-dependent down-regulation and oxidative stress. Here we report the molecular mechanism for the low protein expression from mutant NAT1 alleles that gives rise to the slow acetylator phenotype and show that a similar process accounts for enzyme down-regulation by NAT1 substrates. NAT1 allozymes NAT1 14, NAT1 15, NAT1 17, and NAT1 22 are devoid of enzyme activity and have short intracellular half-lives (similar to4 h) compared with wild-type NAT1 4 and the active allozyme NAT1 24. The inactive allozymes are unable to be acetylated by cofactor, resulting in ubiquitination and rapid degradation by the 26 S proteasome. This was confirmed by site-directed mutagenesis of the active site cysteine 68. The NAT1 substrate p-aminobenzoic acid induced ubiquitination of the usually stable NAT1 4, leading to its rapid degradation. From this study, we conclude that NAT1 exists in the cell in either a stable acetylated state or an unstable non-acetylated state and that mutations in the NAT1 gene that prevent protein acetylation produce a slow acetylator phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone deacetylase inhibitors show promise as chemotherapeutic agents and have been demonstrated to block proliferation in a wide range of tumor cell lines. Much of this antiproliferative effect has been ascribed to the up-regulated expression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). In this article, we report that p21 expression was up-regulated by relatively low doses of the histone deacetylase inhibitor azelaic bishydroxamic acid (ABHA) and correlated with a proliferative arrest. Higher doses of ABHA were cytotoxic. Cells that did not up-regulate p21 expression were hypersensitive to killing by ABHA and died via apoptosis, whereas up-regulation of p21 correlated with reduced sensitivity and a block in the apoptotic mechanism, and these cells seemed to die by necrosis. Using isogenic p21(+/+) and p21(-/-) cell lines and direct inhibition of caspase activity, we demonstrate that the reduced sensitivity to killing by ABHA is a consequence of inhibition of apoptosis by up-regulated p21 expression. These data indicate the enormous potential of therapeutic strategies that bypass the cytoprotective effect of p21 and act on the same molecular targets as the histone deacetylase inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of specific histone deacetylase inhibitors has revealed critical roles for the histone deacetylases (HDAC) in controlling proliferation. Although many studies have correlated the function of HDAC inhibitors with the hyperacetylation of histones, few studies have specifically addressed whether the accumulation of acetylated histones, caused by HDAC inhibitor treatment, is responsible for growth inhibition. In the present study we show that HDAC inhibitors cause growth inhibition in normal and transformed keratinocytes but not in normal dermal fibroblasts, This was despite the observation that the HDAC inhibitor, suberic bishydroxamate (SBHA), caused a kinetically similar accumulation of hyperacetylated histones, This cell type-specific response to SBHA was not due to the inactivation of SBHA by fibroblasts, nor was it due to differences in the expression of specific HDAC family members. Remarkably, overexpression of HDACs 1, 4, and 6 in normal human fibroblasts resulted in cells that could be growth-inhibited by SBHA. These data suggest that, although histone acetylation is a major target for HDAC inhibitors, the accumulation of hyperacetylated histones is not sufficient to cause growth inhibition in all cell types, This suggests that growth inhibition, caused by HDAC inhibitors, may be the culmination of histone hyperacetylation acting in concert with other growth regulatory pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a functional and biochemical link between the myogenic activator MyoD, the deacetylase HDAC1, and the tumor suppressor pRb. Interaction of MyoD with HDAC1 in undifferentiated myoblasts mediates repression of muscle-specific gene expression. Prodifferentiation cues, mimicked by serum removal, induce both downregulation of HDAC1 protein and pRb hypophosphorylation. Dephosphorylation of pRb promotes the formation of pRb-HDAC1 complex in differentiated myotubes. pRb-HDAC1 association coincides with disassembling of MyoD-HDAC1 complex, transcriptional activation of muscle-restricted genes, and cellular differentiation of skeletal myoblasts. A single point mutation introduced in the HDAC1 binding domain of pRb compromises its ability to disrupt MyoD-HDAC1 interaction and to promote muscle gene expression. These results suggest that reduced expression of HDAC1 accompanied by its redistribution in alternative nuclear protein complexes is critical for terminal differentiation of skeletal muscle cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated roles of different forms of cytochrome P450 (P450 or CYP) in the metabolic activation of heterocyclic amines (HCAs) and other procarcinogens to genotoxic metabolite(s) in the newly developed umu tester strains Salmonella typhimurium (S. typhimurium) OY1002/1A1, OY1002/1A2, OY1002/1B1, OY1002/2C9, OY1002/2D6, OY1002/2E1 and OY 1002/3A4. which express respective human P450 enzymes and NADPH-cytochrome P350 reductase (reductase) and bacterial O-acetyltransferase (O-AT). These strains were established by introducing two plasmids into S. typhimurium TA 1535, one carrying both P450 and the reductase cDNA in a bicistronic construct under control of an IPTG-inducible double me promoter and the other, pOA 102, carrying O-AT and umuClacZ fusion genes. Expression levels of CYP were found to range between 35 to 550 nmol/l cell culture in the strains tested. O-AT activities in different strains ranged from 52 to 135 nmol isoniazid acetylated/min/mg protein. All HCAs tested, and 2-aminoanthracene and 2-aminofluorene exhibited high genotoxicity in the OY1002/1A2 strain, and genotoxicity of 2-amino-3-methylimidazo [4,5-f]quinoline was detected in both the OY1002/1A1 and OY1002/1A2 strains. 1-Amino-1,4-dimethyl-5H-pyrido[4.3-b]-indole and 3-amino-1-methyl-5H-pyrido[4,3-b]-indole were activated in the OY1002/1A1, OY1002/1B1, OY1002/1A2, and OY1002/3A4 strains. Aflatoxin B-1 exhibited genotoxicity in the OY1002/1A2, OY1002/1A1, and OY1002/3A4 strains. beta -Naphthylamine and benzo[a]pyrene did not exhibit genotoxicity in any of the strains. These results suggest that CYP1A2 is the major cytochrom P450 enzyme involved in bioactivation of HCAs. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Posttransplant lymphoproliferative disease (PTLD), driven by the presence of Epstein-Barr virus (EBV), is becoming an increasingly important clinical problem after solid organ transplantation. The use of immunosuppressive therapy leads to the inhibition of the cytotoxic T cells that normally control the EBV latently infected B cells. The prognosis for many patients with PTLD is poor, and the optimal treatment strategy is not well defined. Method. This study investigates the use of a histone deacetylase inhibitor, azelaic bishydroxamic acid (ABRA), for its ability to effectively kill EBV-transformed lymphoblastoid cell lines. Results. In vitro treatment of lymphoblastoid cell lines with ABRA showed that they were effectively killed by low doses of the drug (ID50 2-5 mug/ml) within 48 hr. As well as being effective against polyclonal B-cell lines, ABHA was also shown to be toxic to seven of eight clonal Burkitt's lymphoma cell lines, indicating that the drug may also be useful in the treatment of late-occurring clonal PTLD. In addition, ABHA treatment did not induce EBV replication or affect EBV latent gene expression. Conclusion. These studies suggest that ABHA effectively kills both polyclonal and clonal B-cell lines and has potential in the treatment of PTLD.