3 resultados para hierarchical clustering
em University of Queensland eSpace - Australia
Resumo:
We have undertaken two-dimensional gel electrophoresis proteomic profiling on a series of cell lines with different recombinant antibody production rates. Due to the nature of gel-based experiments not all protein spots are detected across all samples in an experiment, and hence datasets are invariably incomplete. New approaches are therefore required for the analysis of such graduated datasets. We approached this problem in two ways. Firstly, we applied a missing value imputation technique to calculate missing data points. Secondly, we combined a singular value decomposition based hierarchical clustering with the expression variability test to identify protein spots whose expression correlates with increased antibody production. The results have shown that while imputation of missing data was a useful method to improve the statistical analysis of such data sets, this was of limited use in differentiating between the samples investigated, and highlighted a small number of candidate proteins for further investigation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We have used microarray gene expression pro. ling and machine learning to predict the presence of BRAF mutations in a panel of 61 melanoma cell lines. The BRAF gene was found to be mutated in 42 samples (69%) and intragenic mutations of the NRAS gene were detected in seven samples (11%). No cell line carried mutations of both genes. Using support vector machines, we have built a classifier that differentiates between melanoma cell lines based on BRAF mutation status. As few as 83 genes are able to discriminate between BRAF mutant and BRAF wild-type samples with clear separation observed using hierarchical clustering. Multidimensional scaling was used to visualize the relationship between a BRAF mutation signature and that of a generalized mitogen-activated protein kinase ( MAPK) activation ( either BRAF or NRAS mutation) in the context of the discriminating gene list. We observed that samples carrying NRAS mutations lie somewhere between those with or without BRAF mutations. These observations suggest that there are gene-specific mutation signals in addition to a common MAPK activation that result from the pleiotropic effects of either BRAF or NRAS on other signaling pathways, leading to measurably different transcriptional changes.
Resumo:
Chronic alcohol exposure induces lasting behavioral changes, tolerance, and dependence. This results, at least partially, from neural adaptations at a cellular level. Previous genome-wide gene expression studies using pooled human brain samples showed that alcohol abuse causes widespread changes in the pattern of gene expression in the frontal and motor cortices of human brain. Because these studies used pooled samples, they could not determine variability between different individuals. In the present study, we profiled gene expression levels of 14 postmortem human brains (seven controls and seven alcoholic cases) using cDNA microarrays (46 448 clones per array). Both frontal cortex and motor cortex brain regions were studied. The list of genes differentially expressed confirms and extends previous studies of alcohol responsive genes. Genes identified as differentially expressed in two brain regions fell generally into similar functional groups, including metabolism, immune response, cell survival, cell communication, signal transduction and energy production. Importantly, hierarchical clustering of differentially expressed genes accurately distinguished between control and alcoholic cases, particularly in the frontal cortex.