10 resultados para herbage

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Edible herbage production and water-use-efficiency of three tree legumes (Leucaena leucocephala cv. Tarramba, L. pallida x L. leucocephala (KX2) and Gliricidia sepium), cut at different times of the year (February, April, June and uncut) were compared in a semi-arid area of Timor Island, Indonesia. Cutting in the early and mid dry-season (April and June) resulted in higher total leaf production (P< 0.05) and water-use-efficiency (P< 0.05), than cutting late in the wet-season (February) or being left uncut. For the leucaena treatments removing leaf in the early to mid dry-season reduced transpiration, saving soil water for subsequent regrowth as evidenced by the higher relative water contents of leaves from these treatments. This cutting strategy can be applied to local farming conditions to increase the supply of feed for livestock during the dry season.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of laboratory and animal studies examined the use of chemical and biological agents to enhance the digestibility of Rhodes grass (grass) cut at 60 (young) and 100 (mature) days of regrowth and ensiled as big round bales. The treatments included an untreated control (C), a microbial inoculant (I), NaOH, CaO and NaOH plus inoculant (NaOH + I). Inoculant was grown anaerobically, using a starter culture of rumen fluid from cattle given Rhodes grass. Treatments C, 1, NaOH, NaOH + I, were offered separately to twelve dairy heifers, in a 3 X 4 randomized complete block design, repeated twice for each grass silage. C and I had substantial mould growth, compared with no visible mould in NaOH or NaOH + 1. CaO treatment was effective in preventing mould growth, but had little effect on the chemical composition and in sacco digestibility of mature grass silage. NaOH reduced NDF content and increased in sacco digestibility (P < 0.05) but not the in vivo digestibility (P > 0.05) of both mature- and young-grass silage. The effects of other treatments on nutritive value were non-significant at both stages of maturity. NaOH increased the intake of mature-grass silage by 24-26% (P < 0.05), but had little effect on the intake of young-grass silage (P > 0.05). Treatment I consistently reduced grass silage intake (P < 005) for young-grass silage. The findings of these studies show that treating mature Rhodes grass with NaOH will improve its nutritive value and reduce mould growth in conserved herbage. However none of the treatments in this study had any consistently positive effects on the in vivo nutritive value or storage quality of young-grass silage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major challenge faced by today's white clover breeder is how to manage resources within a breeding program. It is essential to utilise these resources with sufficient flexibility to build on past progress from conventional breeding strategies, but also take advantage of emerging opportunities from molecular breeding tools such as molecular markers and transformation. It is timely to review white clover breeding strategies. This background can then be used as a foundation for considering how to continue conventional plant improvement activities and complement them with molecular breeding opportunities. In this review, conventional white clover breeding strategies relevant to the Australian dryland target population environments are considered. Attention is given to: (i) availability of genetic variation, (ii) characterisation of germplasm collections, (iii) quantitative models for estimation of heritability, (iv) the role of multi-environment trials to accommodate genotype-by-environment interactions, (v) interdisciplinary research to understand adaptation to dryland environments, (vi) breeding and selection strategies, and (vii) cultivar structure. Current achievements in biotechnology with specific reference to white clover breeding in Australia are considered, and computer modelling of breeding programs is discussed as a useful integrative tool for the joint evaluation of conventional and molecular breeding strategies and optimisation of resource use in breeding programs. Four areas are identified as future research priorities: (i) capturing the potential genetic diversity among introduced accessions and ecotypes that are adapted to key constraints such as summer moisture stress and the use of molecular markers to assess the genetic diversity, (ii) understanding the underlying physiological/morphological root and shoot mechanisms involved in water use efficiency of white clover, with the objective of identifying appropriate selection criteria, (iii) estimation of quantitative genetic parameters of important morphological/physiological attributes to enable prediction of response to selection in target environments, and (iv) modelling white clover breeding strategies to evaluate the opportunities for integration of molecular breeding strategies with conventional breeding programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A grazing trial was conducted to quantify N cycling in degraded Leucaena leucocephala (leucaena)-Brachiaria decumbens (signal grass) pastures grown on an acid, infertile, podzolic soil in south-east Queensland. Nitrogen accumulation and cycling in leucaena-signal grass pastures were evaluated for 9 weeks until all of the leucaena on offer (mean 600 kg edible dry matter (EDM)/ha, 28% of total pasture EDM) was consumed. Nitrogen pools in the grass, leucaena, soil, cattle liveweight, faeces and urine were estimated. The podzolic soil (pH 4.8-5.9) was found to be deficient in P, Ca and K. Leucaena leaf tissues contained deficient levels of N, P and Ca. Grass tissues were deficient in N and P. Grazing was found to cycle 65% of N on offer in pasture herbage. However, due to the effect of the plant nutrient imbalances described above, biological N fixation by leucaena contributed only 15 kg/ha N to the pasture system over the 9-month regrowth period, of which 13 kg/ha N was cycled. Cattle retained 1.8 kg/ha N (8% of total N consumed) in body tissue and the remainder was excreted in dung and urine in approximately equal proportions. Mineral soil N concentrations did not change significantly (-3.5 kg/ha N) over the trial period. The ramifications of grazing and fertiliser management strategies, and implications for pasture rundown and sustainability are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signal grass pastures were oversown with four Leucaena spp. planted in hedgerows and evaluated for their agronomic productivity and ability to support steer liveweight gains. Each Leucaena sp. (L. leucocephala, L. pallida, L colli. nst. i., L. trichandra) was planted as seedlings into two I ha paddocks in rows 5 m apart, with I m spacing between trees. Cattle were rotationally grazed on the 2 replicates of each species, as well as on two I ha paddocks of a signal grass on y (Brachiaria decumbens) control, over a 243-day period at a stocking rate of 3 steers/ha. Mean presentation yield and herbage allowance of the Leucaena accessions over the grazing period were highest for L pallida (1100 kg/ha and 0.8 kg DM/kg LW, respectively), followed by L. leucocephala (700 kg/ha and 0.5 kg DM/kg LW), L. collinsii (700 kg/ha and 0.4 kg DM/kg LW) and L. trichandra (300 kg/ha and 0.2 kg DM/kg LW). Despite only moderate presentation yields and herbage allowances, steers grazing L. leucocephala and L. collinsii accessions produced the highest mean liveweight gains (LWG) of 0. and 0.56 kg/hd/d, respectively. While L. pallida produced the highest DM yields, it supported the lowest LWG of 0.36 kg/hd/d. The mean LWGs of steers grazing L. trichandra and the control (grass only) treatments were similar at 0.48 kg/ hd/d. The possible reasons for the differences in steer performance on the different Leucaena accessions are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of trials to increase understanding of the summer dormancy trait in Dactylis glomerata was conducted. Autumn-sown reproductive and younger, spring-sown plants of 2 drought-resistant cultivars, contrasting for summer dormancy, were established and then tested in summer 2002 under long drought, drought + midsummer storm, or full irrigation. The autumn-sown reproductive plants of cv. Kasbah were summer dormant under all moisture regimes and exhibited the characteristic traits including growth cessation, rapid herbage senescence, and dehydration of surviving organs (-6.7MPa). Cultivar Kasbah used 8% less soil water over the summer and also began to rehydrate its leaf bases from conserved soil water before the drought broke. The non-dormant cv. Medly grew for 10 days longer under drought and whenever moisture was applied; Medly also responded to the storm with a decline in dehydrin expression in leaf bases, whereas no decline occurred in Kasbah, presumably because it remained dormant and therefore much drier. The irrigated, younger, spring-sown swards of cv. Kasbah had restrained growth and produced only about 25% of the herbage of cv. Medly. Drought reduced activity and growth of young plants of both cultivars, but whereas Medly regrew in response to the storm, cv. Kasbah did not, indicating that dormancy, although only partially expressed after spring sowing, was reinforced by summer drought. A longer drought in 2003 caused a 22% loss of the basal cover in cv. Medly, whereas Kasbah fully maintained its sward and therefore produced a higher post-drought autumn yield. This work confirms summer dormancy as a powerful trait for improving persistence over long, dry summers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the shortage of information on summer dormancy in tall fescue (Festuca arundinacea, syn. Lolium arundinaceum), we tested the response of 2 cultivars of differing dormancy expression and growth stage to a range of summer moisture conditions, including full irrigation, drought, and a simulated mid-summer storm and analysed whether traits associated with summer dormancy conferred better survival under severe field drought. Autumn-sown reproductive and younger, spring-sown plants of 2 cultivars, claimed to exhibit contrasting summer dormancy, were established and then tested in summer 2002 under either long drought, drought+ simulated mid-summer storm, or full irrigation. The autumn-sown reproductive plants of cv. Flecha exhibited traits that can be associated with partial summer dormancy since under summer irrigation they reduced aerial growth significantly and exhibited earlier herbage senescence. Moreover, cv. Flecha used 35% less soil water over the first summer. However, the water status of leaf bases of young vegetative tillers of both cultivars was similar under irrigation and also throughout most of the drought (leaf potential and water content maintained over -4MPa and at approx. 1 g H2O/g DM, respectively). The summer-active cv. Demeter did not stop leaf elongation even in drought and produced twice as much biomass as Flecha under irrigation. Cultivar Demeter responded to the simulated storm with a decline in dehydrin expression in leaf bases, whereas no decline occurred in Flecha, presumably because it remained partially dormant. The younger, spring-sown swards of both cultivars had similar biomass production under summer irrigation but whereas Demeter regrew in response to the simulated storm, cv. Flecha did not, indicating that dormancy, although only partially expressed, was reinforced by summer drought. In all trials, cv. Flecha out-yielded Demeter in autumn regrowth. In particular, the severe drought in 2003 caused a 25% loss of the basal cover in cv. Demeter, whereas Flecha fully maintained its sward allowing it to produce a higher post-drought autumn yield. This work links summer dormancy with higher persistence over long, dry summers.