40 resultados para hematopoietic stem cell
em University of Queensland eSpace - Australia
Resumo:
Mobilization is now used worldwide to collect large numbers of hematopoietic stem and progenitor cells (HSPCs) for transplantation. Although the first mobilizing agents were discovered largely by accident, discovery of more efficient mobilizing agents will require a better understanding of the molecular mechanisms responsible. During the past 5 years, a number of mechanisms have been identified, shedding new light on the dynamics of the hematopoietic system in vivo and on the intricate relationship between hematopoiesis, innate immunity, and bone. After briefly reviewing the mechanisms by which circulating HSPCs home into the bone marrow and what keeps them there, the current knowledge of mechanisms responsible for HSPC mobilization in response to hematopoietic growth factors such as granulocyte colony-stimulating factor, chemotherapy, chemokines, and polyanions will be discussed together with current strategies developed to further increase HSPC mobilization. (c) 2006 International Society for Experimental Hematology.
Resumo:
Gene expression studies from hematopoietic stem cell (HSC) populations purified to variable degrees have defined a set of sternness genes. Unexpectedly, results also hinted toward a HSC chromatin poised in a wide-open state. With the aim of providing a robust tool for further studies into the molecular biology of HSCs, the studies herein describe the construction and comparative molecular analysis of A-phage cDNA libraries from highly purified HSCs that retained their long-term repopulating activities (long-term HSCs [LT-HSCs]) and from short-term repopulating HSCs that were largely depleted of these activities. Microarray analysis of the libraries confirmed the previous results but also revealed an unforeseen preferential expression of translation- and metabolism-associated genes in the LT-HSCs. Therefore, these data indicate that HSCs are quiescent only in regard of proliferative activities but are in a state of readiness to provide the metabolic and translational activities required after induction of proliferation and exit from the HSC pool.
Resumo:
Objective. Since 1996, autologous hemopoietic stem cell transplantation (HSCT) has been used to treat severe rheumatoid arthritis (RA). To date, published reports have been individual cases or series containing small numbers. This study combined the worldwide experience in a single analysis. Methods. The Autoimmune Disease Databases of the European Group for Blood and Marrow Transplantation (EBMT) and the Autologous Blood and Marrow Transplant Registry (ABMTR) were used to identify patients with RA treated with autologous HSCT. Further information relating to patient and treatment-specific variables was obtained by questionnaire. Results. Seventy-six patients were registered from 15 centers. Seventy-three patients had received autologous HSCT, and in 3 patients hematopoietic stem cells (HSC) were mobilized but not transplanted. Transplanted patients (median age 42 yrs, 74% female, 86% rheumatoid factor positive) had been previously treated with a mean of 5 (range 2-9) disease modifying antirheumatic drugs (DMARD). Significant functional impairment was present, with a median Health Assessment Questionnaire (HAQ) score of 1.4 (range 1.1-2.0) and Steinbrocker score mean 2.39 (SD 0.58). The high dose treatment regimen was cyclophosphamide (CYC) alone in the majority of patients, mostly 200 mg/kg (n = 62). Seven patients received anti-thymocyte globulin (ATG) in addition to CYC, 2 patients busulfan and CYC (BuCYC), and one patient CYC with total body irradiation and ATG. One patient received fludarabine with ATG. Following treatment, one patient received bone marrow but the rest received chemotherapy and/or granulocyte colony-stimulating factor mobilized peripheral blood stem cells. The harvest was unmanipulated in 28 patients, the rest receiving some form of lymphocyte depletion, mostly through CD34+ selection. Median followup was 16 months (range 3-55). Responses were measured using the American College of Rheumatology (ACR) criteria. Forty-nine patients (67%) achieved at least ACR 50% response at some point following transplant. There was a significant reduction in the level of disability measured by the HAQ (p < 0.005). Most patients restarted DMARD within 6 months for persistent or recurrent disease activity, which provided disease control in about half the cases. Response was significantly related to seronegative RA (p = 0.02) but not to duration of disease, number of previous DMARD, presence of HLA-DR4, or removal of lymphocytes from the graft. There was no direct transplant related mortality, although one patient, treated with the BuCYC regimen, died 5 months post-transplant from infection and incidental non-small cell lung cancer. Conclusion. Autologous HSCT is a relatively safe form of salvage treatment in severe, resistant RA. In these open label studies significant responses were achieved in most patients, with over 50% achieving an ACR 50 or more response at 12 months. Although the procedure is not curative, recurrent or persistent disease activity may be subsequently controlled in some patients with DMARD. Clinical trials are necessary to develop this approach inpatients with aggressive disease who have failed conventional treatment including anti-tumor necrosis factor agents.
Resumo:
Survival of bone marrow transplant recipients requiting mechanical ventilation is poor but improving. This study reports a retrospective audit of all haematopoietic stem cell transplant (HSCT) recipients requiring mechanical ventilation at an Australian institution over a period spanning 11 years from 1988 to 1998. Recipients of autologous transplants are significantly less likely to require mechanical ventilation than recipients of allogeneic transplants. Of 50 patients requiring mechanical ventilation, 28% survived to discharge from the intensive care unit, 20% to 30 days post-ventilation, 18% to discharge from hospital and 12% to six months post-ventilation. Risk factors for mortality in the HSCT recipient requiting mechanical ventilation include renal, hepatic and cardiovascular insufficiency and greater severity of illness. Mechanical ventilation of HSCT recipients should not be regarded as futile therapy.
Resumo:
Objective. Evidence from animal studies, case reports, and phase I studies suggests that hemopoietic stem cell transplantation (HSCT) can be effective in the treatment of rheumatoid arthritis (RA). It is unclear, however, if depletion of T cells in the stem cell product infused after high-dose chemotherapy is beneficial in prolonging responses by reducing the number of infused autoreactive T cells. This pilot multicenter, randomized trial was undertaken to obtain feasibility data on whether CD34 selection (as a form of T cell depletion) of an autologous stem cell graft is of benefit in the HSCT procedure in patients with severe, refractory RA. Methods. Thirty-three patients with severe RA who had been treated unsuccessfully with methotrexate and at least 1 other disease-modifying agent were enrolled in the trial. The patients received high-dose immunosuppressive treatment with 200 mg/kg cyclophosphamide followed by an infusion of autologous stem cells that were CD34 selected or unmanipulated. Safety, efficacy (based on American College of Rheumatology [ACR] response criteria), and time to recurrence of disease were assessed on a monthly basis for up to 12 months. Results. All patients were living at the end of the study, with no major unexpected toxicities. Overall, on an intent-to-treat basis, ACR 20% response (ACR20) was achieved in 70% of the patients. An ACR70 response was attained in 27.7% of the 18 patients who had received CD34-selected cells and 53.3% of the 15 who had received unmanipulated cells (P = 0.20). The median time to disease recurrence was 147 days in the CD34-selected cell group and 201 days in the unmanipulated cell group (P = 0.28). There was no relationship between CD4 lymphopenia and response, but 72% of rheumatoid factor (RF)-positive patients had an increase in RF titer prior to recurrence of disease. Conclusion. HSCT can be performed safely in patients with RA, and initial results indicate significant responses in patients with severe, treatment-resistant disease. Similar outcomes were observed in patients undergoing HSCT with unmanipulated cells and those receiving CD34-selected cells. Larger studies are needed to confirm these findings.
Resumo:
The purpose of this investigation was to assess changes in total energy expenditure (TEE), body weight (BW) and body composition following a peripheral blood stem cell transplant and following participation in a 3-month duration, moderate-intensity, mixed-type exercise programme. The doubly labelled and singly labelled water methods were used to measure TEE and total body water (TBW). Body weight and TBW were then used to calculate percentage body fat (%BF), and fat and fat-free mass (FFM). TEE and body composition measures were assessed pretransplant (PI), immediately post-transplant (PII) and 3 months post-PII (PIII). Following PII, 12 patients were divided equally into a control group (CG) or exercise intervention group (EG). While there was no change in TEE between pre- and post-transplant, BW (P
Resumo:
The BRN2 transcription factor (POU3F2, N-Oct-3) has been implicated in development of the melanocytic lineage and in melanoma. Using a low calcium medium supplemented with stem cell factor, fibroblast growth factor-2, endothelin-3 and cholera toxin, we have established and partially characterised human melanocyte precursor cells, which are unpigmented, contain immature melanosomes and lack L-dihydroxyphenylalanine reactivity. Melanoblast cultures expressed high levels of BRN2 compared to melanocytes, which decreased to a level similar to that of melanocytes when cultured in medium that contained phorbol ester but lacked endothelin-3, stem cell factor and fibroblast growth factor-2. This decrease in BRN2 accompanied a positive L-dihydroxyphenylalanine reaction and induction of melanosome maturation consistent with melanoblast differentiation seen during development. Culture of primary melanocytes in low calcium medium supplemented with stem cell factor, fibroblast growth factor-2 and endothelin-3 caused an increase in BRN2 protein levels with a concomitant change to a melanoblast-like morphology. Synergism between any two of these growth factors was required for BRN2 protein induction, whereas all three factors were required to alter melanocyte morphology and for maximal BRN2 protein expression. These finding implicate BRN2 as an early marker of melanoblasts that may contribute to the hierarchy of melanocytic gene control.
Resumo:
The granulocyte colony-stimulating factor (G-CSF) and Fit-3 receptor agonist progenipoietin-1 (ProGP-1) has potent effects on dendritic cell (DC) expansion and may be an alternative to G-CSF for the mobilization of stem cells for allogeneic stem cell transplantation (SCT). We studied the ability of stem cell grafts mobilized with this agent to induce graft-versus-host disease (GVHD) to minor and major histocompatibility antigens in the well-described B6 --> B6D2F1 SCT model. ProGP-1, G-CSIF, or control diluent was administered to donor B6 mice. ProGP-1 expanded all cell lineages in the spleen, and unseparated splenocytes from these animals produced large amounts of interleukin 10 (IL-10) and transforming growth factor beta (TGFbeta) whereas the expression of T-cell adhesion molecules was diminished. Transplantation survival was 0%, 50%, and 90% in recipients of control-, G-CSF-, and ProGP-1-treated allogeneic donor splenocytes, respectively (P < .0001). Donor pretreatment with ProGP-1 allowed a 4-fold escalation in T-cell dose over that possible with G-CSF. Donor CD4 T cells from allogeneic SCT recipients of ProGP-1 splenocytes demonstrated an anergic response to host antigen, and cytokine production (interferon gamma [IFNγ], IL-4, and IL-10) was also reduced while CD8 T-cell cytotoxicity to host antigens remained intact. Neither CD11c(hi) DCs nor CD11c(dim)/B220(hi) DCs from ProGP-1-treated animals conferred protection from GVHD when added to control spleen. Conversely, when equal numbers of purified T cells from control-, G-CSF-, or ProGP-1-treated allogeneic donors were added to allogeneic T-cell-depleted control spleen, survival at day 60 was 0%, 15%, and 90%, respectively (P < .0001). The improved survival in recipients of ProGP-1 T cells was associated with reductions in systemic tumor necrosis factor alpha generation and GVHD of the gastrointestinal tract. We conclude that donor pretreatment with ProGP-1 is superior to G-CSIF for the prevention of GVHD after allogeneic SCT, primarily due to incremental affects on T-cell phenotype and function