5 resultados para harvest time

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A supersweet sweet corn hybrid, Pacific H5, was grown under field conditions in South-East Queensland to study the effects of harvest time and drying conditions on seed quality. Cobs were harvested at different times to obtain seed with two moisture percentage ranges (20-30% and 40-50%) and dried to 12% moisture under different combinations of drying temperatures (30 degrees C, 40 degrees C and 50 degrees C) and air velocities (1.25 m/s, 2.75 m/s and 4.30 m/s). Dried seed was stored at 30 degrees C with bimonthly monitoring of seed quality for 12 months. For standard as well as cold test germinations, statistical analysis yielded significant main effects for temperature, air velocity and harvest moisture content and significant interactions for drying temperature by harvest moisture and drying temperature by air velocity. Germination at the beginning of storage was unaffected by drying temperatures up to 40 degrees C regardless of harvest moisture but was lower at 50 degrees C for higher moisture. However, germination at the end of the storage period of 12 months was greatest for seed harvested at higher moisture and dried at temperatures up to 40 degrees C. Germination was not affected by air velocity for drying temperatures up to 40 degrees C but at 50 degrees C it generally decreased with increase in air velocity. To slow down seed deterioration during storage, it is recommended that sweet corn seed should be harvested at a higher moisture range (40-50%) and dried at 40 degrees C and 4.30 m/s air velocity. The drying temperature can be raised to 50 degrees C for seed harvested at a low moisture range (20-30%) provided the air velocity is kept low (1.25 m/s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been recognized that demographic structure within a population can significantly affect the likely outcomes of harvest. Many studies have focussed on equilibrium dynamics and maximization of the value of the harvest taken. However, in some cases the management objective is to maintain the population at a abundance that is significantly below the carrying capacity. Achieving such an objective by harvest can be complicated by the presence of significant structure (age or stage) in the target population. in such cases, optimal harvest strategies must account for differences among age- or stage-classes of individuals in their relative contribution to the demography of the population. In addition, structured populations are also characterized by transient non-linear dynamics following perturbation, such that even under an equilibrium harvest, the population may exhibit significant momentum, increasing or decreasing before cessation of growth. Using simple linear time-invariant models, we show that if harvest levels are set dynamically (e.g., annually) then transient effects can be as or more important than equilibrium outcomes. We show that appropriate harvest rates can be complicated by uncertainty about the demographic structure of the population, or limited control over the structure of the harvest taken. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guayule (Parthenium argentatum Gray) is a rubber-producing shrub native to the semi-arid region of north central Mexico and southwestern Texas. Timely harvest is critical to achieve maximum seed viability, vigour, and yield. The objective of this study was to investigate possible indicators of optimum seed maturity in guayule. The optimum harvest maturity time for guayule was studied by comparing quality parameters at different times after flowering. Heat units expressed as growing degree-days after flowering were calculated and related to seed development stages and quality. Seed quality at different stages of development was assessed by germination, capitulum dry mass, 1000 seed mass, and percentage of filled seeds. The maximum seed quality was recorded at 329 growing degree-days (GDD). This was 28 days from time of flowering. At this date, the moisture content of the capitulum was 48% on a wet basis and the colour was comparable to cinnamon (Code 165C) on the Royal Horticultural Society (R.H.S.) standard colour chart. Of all the parameters GDD, 1000 seed mass, and percentage of filled seeds provided a more rapid and reliable measure of optimum seed maturity. Colour identification can be used as an additional indicator. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Each year growers are faced with the decision of when to harvest individual blocks of sugarcane throughout the harvest season. This decision influences the yield of the current crop and can affect the yield in the following season. Growers must therefore decide which blocks to harvest early and which to harvest later in the harvest season. Usually, the latest harvested cane is the lowest yielding the following year (the �late harvest� effect). Block productivity data from Tully were used to determine the effects of harvest timing on cane yield of the current and subsequent crop. The results are tabulated to provide a ready reference to these time of harvest effects on the current and future crop in either a single year or over the full crop cycle for the Tully district.