149 resultados para ground reaction vector technique
em University of Queensland eSpace - Australia
Resumo:
The objective was to describe the relationship between epidemiological and biomechanical factors in the causal pathway of inflatable rescue boat (IRB)-related injuries in Australian surf lifesavers; to develop epidemiological and biomechanical methodologies and measurement instruments that identify and measure the risk factors, for use in future epidemiological studies. Epidemiological and biomechanical models of injury causation were combined. Host, agent and environmental factors that influenced total available force for transfer to host were specified. Measurement instruments for each of the specified risk factors were developed. Instruments were piloted in a volunteer sample of surf lifesavers. Participant characteristics were recorded using demographic questionnaires; IRB operating techniques were recorded using a custom-made on-board camera (Grand RF-Guard) and images of operating techniques were coded by two independent observers. Ground reaction forces transmitted to the host through the lifesaver's feet at the time of wave impact were measured using a custom-built piezoelectric force platform. The demographic questionnaire was found practical; the on-board camera functioned successfully within the target environment. Agreement between independent coders of IRB operating technique images was significant (p < 0.001) with Kappa values ranging from 0.5 to 0.7. Biomechanical instruments performed successfully in the target environment. Peak biomechanical forces were 415.6N (left foot) and 252.9N (right foot). This study defines the relationship between epidemiological and biomechanical factors in modifying the risk of IRB-related injury in a population of surf lifesavers. Preliminary feasibility of combining epidemiological and biomechanical information has been demonstrated. Further testing of the proposed model and measurement instruments is required.
Resumo:
Objective: To explore circadian variation in pain, stiffness, and manual dexterity inpatients with hand osteoarthritis (OA). Methods: Twenty one patients with hand OA, as defined by ACR criteria (17 women, four men, mean age 62.2 years, range 52-74 years) self rated pain and stiffness on separate 10 cm horizontal visual analogue scales and performed bead intubation coordinometry (BIC) six times each day (on waking up, at bedtime, and every four hours in between) for 10 consecutive days. Each series (using data with the trend removed if there was a significant trend) was analysed for circadian rhythmicity by a cosine. vector technique (single cosinor). With individual data expressed as the percentage of the mean, group rhythm characteristics at period 24 hours were summarised for each variable by population mean cosinor analysis. Results: Individual analyses identified significant circadian rhythms at pless than or equal to0.05 for pain (n=15/21), stiffness (n=16/20), and dexterity (n=18/21), and a significant circadian rhythm on a group basis was identified for pain (p=0.013), stiffness (p
Resumo:
Objective: To investigate the influence of age and preparation level on postural muscle activation and step completion time during a rapid step task. Design: Postural muscle onset times (EMG) and ground reaction forces were recorded from healthy young (n = 20, age 21 +/- 3 years) and older (n = 25, age 71 +/- 5 years) female adults during a choice reaction-time stepping paradigm. Main outcome measures: Onset times of six trunk and hip muscles, reaction time and components of the step (weight shift time, step time and task time) were recorded. Results: Muscle activation was delayed and movement time was lengthened in both young and older adults when poorly prepared for a stepping task. While reduced preparation did not influence older adults to a greater extent than young adults, the slowest step response and completion time was evident in older adults when poorly prepared to move. Conclusions: A late postural response when poorly prepared to move may be a contributing factor to an increased risk of overbalancing in older adults. Future assessment of and intervention to improve postural stability in older adults should be expanded to incorporate tasks performed at various levels of preparation.
Resumo:
Although breathing perturbs balance, in healthy individuals little sway is detected in ground reaction forces because small movements of the spine and lower limbs compensate for the postural disturbance. When people have chronic low back pain (LBP), sway at the ground is increased, possibly as a result of reduced compensatory motion of the trunk. The aim of this study was to determine whether postural compensation for breathing is reduced during experimentally induced pain. Subjects stood on a force plate with eyes open, eyes closed, and while breathing with hypercapnoea before and after injection of hypertonic saline into the right lumbar longissimus muscle to induce LBP. Motion of the lumbar spine, pelvis, and lower limbs was measured with four inclinometers fixed over bony landmarks. During experimental pain, motion of the trunk in association with breathing was reduced. However, despite this reduction in motion, there was no increase in postural sway with breathing. These data suggest that increased body sway with breathing in people with chronic LBP is not simply because of reduced trunk movement, but instead, indicates changes in coordination by the central nervous system that are not replicated by experimental nociceptor stimulation.
Resumo:
An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.
Resumo:
A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.
Resumo:
A spotted fever-like rickettsia was identified in a Hemaphysalis tick by polymerase chain reaction (PCR) amplification and sequencing of the 16S rDNA, ompA, and ompB genes. A comparison of these nucleotide sequences with those of other spotted fever group (SFG) rickettsiae revealed that the Hemaphysalis tick rickettsia was distinct from other previously reported strains. Phylogenetic analysis based on both ompA and ompB also indicates that the strain’s closest relatives are the agents of Thai tick typhus (Rickettsia honei strain TT-118) and Flinders Island spotted fever (R. honei). This study represents the first report of an R. honei-like agent from a Hemaphysalis tick in Australia and of a spotted fever group rickettsia from Cape York Peninsula, Queensland.
Resumo:
The endosymbiotic bacteria in the genus Wolbachia have been proposed as a potential candidate to deliver pathogen-blocking genes into natural populations of medically important insects. The successful application of Wolbachia in insect vector control depends on the ability of the agent to successfully invade and maintain itself at high frequency under field conditions. Here, we evaluated the prevalence of Wolbachia infections in a field population of the Wolbachia-superinfected mosquito Aedes albopictus. A field prevalence of 100% (n = 1,016) was found in a single population in eastern Thailand via polymerase chain reaction (PCR) testing of Wolbachia both from individual parent females and their corresponding F1 offspring. This is the first report of accurate Wolbachia prevalence in a field population of an insect disease vector. The prevalence of superinfection was estimated to be 99.41%. All single-infected individual mosquitoes (n = 6) were found to harbor group A Wolbachia. For this particular population, none was found to be single-infected with group B Wolbachia. Our results also show that PCR testing of field materials alone without checking F1 offspring overestimated the natural prevalence of single infection. Thus, the confirmation of infection status by means of F1 offspring was critical to the accurate estimates of Wolbachia prevalence under field conditions.
Resumo:
By using a matched asymptotic expansion technique, the shrinking core model (SCM) used in non-catalytic gas solid reactions with general kinetic expression is rigorously justified in this paper as a special case of the homogeneous model when the reaction rate is much faster than that of diffusion. The time-pendent velocity of the moving reacted-unreacted interface is found to be proportional to the gas flux at that interface for all geometries of solid particles, and the thickness order of the reaction zone and also the degree of chemical reaction at the interface is discussed in this paper.
Resumo:
The effects of the support phase and catalyst preparation methods on catalytic activity and carbon deposition were systematically investigated over nickel catalysts supported on Al2O3, SiO2 and MgO for the reforming reaction of methane with carbon dioxide. It is found that the pore structure of the support and metal-support interaction significantly affected the catalytic activity and coking resistance. Catalyst with well-developed porosity exhibited higher catalytic activity. Strong interaction between metal and the support made the catalyst more resistant to sintering and coking, thus resulting in a longer time of catalyst stability. (C) 1998 Elsevier Science B.V.
Resumo:
The aim of this research is to determine the effects of constraining the horizontal distance of the feet from the load on the posture adopted at the start of the lift. Kinematic data were collected while each of 24 subjects lifted 3, 6, and 9 kg loads from a starting height 18 cm above the ground. The position of the feet was controlled relative to the load such that the horizontal distance from the hand to the ankle at the start of extension was either 20, 40, or 60 cm. Subjects performed 20 trials in each of six combinations of load and ankle-load distance chosen to provide three sets of equivilent load moment pairs. The initial horizontal distance from the load to the ankle had a large influence on the posture adopted to lift the load. Ankle and knee flexion, in particular, were reduced when the ankle-load distance was smaller, and particularly so when the distance was reduced to 20 cm. Hip flexion was reduced to a smaller extent, while lumbar vertebral flexion remained relatively unchanged. The inclination of the trunk at the start of the lift was unchanged when the ankle-load distance was 60 or 40 cm, but was 10 degrees greater when the load was 20 cm from the ankles, indicating that subjects adopted a posture closer to a stoop when the ankle-load distance was small. Comparison of conditions of equal load moment (but different load mass and ankle-load distance) revealed differences which mirrored the effects of ankle-load distance alone, suggesting that the effects of ankle-load distance on the posture adopted at the start of extension were largely independent of the load moment. While the forces and torques required to lift a load must be to some extent dependent on the load moment, rather than load or ankle-load distance per se, the posture adopted to lift the load is not.
Resumo:
We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.
Resumo:
Current methods to detect transduction efficiency during the routine use of integrating retroviral vectors in gene therapy applications may require the use of radioactivity and usually rely upon subjective determination of the results. We have developed two competitive quantitative assays that use an enzyme-linked, amplicon hybridization assay (ELAHA) to detect the products of PCR-amplified regions of transgene from cells transduced with Moloney murine leukemia virus vectors. The quantitative assays (PCR-ELAHA) proved to be simple, rapid, and sensitive, avoiding the need for Southern hybridization, complex histochemical stains, or often subjective and time-consuming tissue culture and immunofluorescence assays. The PCR-ELAHA systems can rapidly detect proviral DNA from any retroviral vector carrying the common selective and marker genes neomycin phosphotransferase and green fluorescent protein, and the methods described are equally applicable to other sequences of interest, providing a cheaper alternative to the evolving real-time PCR methods. The results revealed the number of copies of retrovector provirus present per stably transduced cell using vectors containing either one or both qPCR targets.
Propagation of nonstationary curved and stretched premixed flames with multistep reaction mechanisms
Resumo:
The propagation speed of a thin premixed flame disturbed by an unsteady fluid flow of a larger scale is considered. The flame may also have a general shape but the reaction zone is assumed to be thin compared to the flame thickness. Unlike in preceding publications, the presented asymptotic analysis is performed for a general multistep reaction mechanism and, at the same time, the flame front is curved by the fluid flow. The resulting equations define the propagation speed of disturbed flames in terms of the properties of undisturbed planar flames and the flame stretch. Special attention is paid to the near-equidiffusion limit. In this case, the flame propagation speed is shown to depend on the effective Zeldovich number Z(f) , and the flame stretch. Unlike the conventional Zeldovich number, the effective Zeldovich number is not necessarily linked directly to the activation energies of the reactions. Several examples of determining the effective Zeldovich number for reduced combustion mechanisms are given while, for realistic reactions, the effective Zeldovich number is determined from experiments. Another feature of the present approach is represented by the relatively simple asymptotic technique based on the adaptive generalized curvilinear system of coordinates attached to the flame (i.e., intrinsic disturbed flame equations [IDFE]).
Resumo:
Members of the Culex sitiens subgroup are important vectors of arboviruses, including Japanese encephalitis virus, Murray Valley encephalitis virus and Ross River virus. Of the eight described species, Cx. annulirostris Skuse, Cx. sitiens Wiedemann, and Cx. palpalis Taylor appear to be the most abundant and widespread throughout northern Australia and Papua New Guinea (PNG). Recent investigations using allozymes have shown this subgroup to contain cryptic species that possess overlapping adult morphology. We report the development of a polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) procedure that reliably separates these three species. This procedure utilizes the sequence variation in the ribosomal DNA ITS1 and demonstrates species-specific PCR-RFLP profiles from both colony and field collected material. Assessment of the consistency of this procedure was undertaken on mosquitoes sampled from a wide geographic area including Australia, PNG, and the Solomon Islands. Overlapping adult morphology was observed for Cx. annulirostris and Cx. palpalis in both northern Queensland and PNG and for all three species at one site in northwest Queensland.