1 resultado para grooming
em University of Queensland eSpace - Australia
Resumo:
Animal experiments have shown that Vitamin D plays a role in both brain development and adult brain function. The adult Vitamin D receptor null mutant mouse (VDR -/-) is reported to be less active and more anxious than wild-type litter mate controls and to have poor swimming ability. However, an anxious behavioural phenotype is inferred from differences in locomotor behaviour. This is a general problem in behavioural phenotyping where a neurological phenotype is inferred from changes in locomotion which will be affected by non-neurological factors, such as muscle fatigue. In this study of VDR -/-, we conducted a detailed examination of one form of motor behaviour, swimming, compared to wildtype littermate controls. Swimming was assessed using a forced swim test, a laneway swimming test and a watermaze test using a visible platform. Post-swimming activity was assessed by comparing grooming and rearing behaviour before, and 5 min after, the forced swimming test. We replicated previous findings in which VDR -/- mice demonstrate more sinking episodes than wildtype controls in the forced swim test but they were similar to controls in the time taken to swim a 1 m laneway, and in the time taken to reach a visible platform in the watermaze. Thus, the VDR -/- mice were able to swim but were not able to float. Grooming and rearing behaviour of the VDR -/- mice was similar to wildtype controls before the forced swim but the VDR -/- were much less active after the swim compared with wildtype mice which displayed high levels of grooming and rearing. We conclude that VDR -/- mice have muscular and motor impairments that do not affect their ability to swim but significantly alters the ability to float as well as their post-swimming activity. Differences in muscle strength may confound tests of activity that are used to infer an anxious phenotype. (c) 2005 Elsevier Inc. All rights reserved.