19 resultados para gravitational lenses
em University of Queensland eSpace - Australia
Resumo:
The otoliths and lenses of the temperate damselfish Parma microlepis (Gunther) (Pomacentridae) showed similar differences in trace-metal profile for selected locations along the coast of New South Wales, Australia. Otoliths and lenses displayed a differential ability to accumulate metals. Metal concentrations were ranked differently in the two structures (e.g. Sr > Ba > Pb > Rb > Hg in otoliths, and Hg > Sr similar or equal to Rb > Pb > Ba in lenses), and where similar metals were accumulated, they were accumulated at vastly different concentrations (e.g. Ba concentrations in otoliths are a thousand-fold greater than in lenses). Analyses of the otoliths and lenses of P. microlepis from locations close to Sydney and up to 100 kill from the city were able to distinguish amongst these locations with respect to a number of metals, namely Ba, Mn and Hg. Multivariate analyses of otolith and lens data gave similar results among locations (agreement was obtained for Ii out of 15 pair-wise comparisons), and differences were attributable to the differential ability of the two structures to accumulate metals such as Mn and Hg. Trace-metal differences between locations were found to coincide with the proximity of sewage (including industrial waste) and petroleum storage facilities to the different locations.
Resumo:
We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.
Resumo:
The eye lenses of Parma microlepis from the rocky barrens of Sydney (New South Wales, Australia) were found to contain Ba, Hg, Rb, and Sr at concentrations above the quantitative detection limits of solution-based inductively-coupled plasma-mass spectrometry (ICP-MS). Lenses were separated into the hard central nucleus and the softer surrounding cortex. Nuclei contained lower (equal for Ba) concentrations of these metals. Biochemical analysis of the protein composition of these lenses revealed differences in the ratio of gamma-crystallin to beta-crystallin in the lens nucleus and cortex. These changes were shown to be attributable both to protein degradation and changes in protein synthesis as fish age. Such changes may lead to the loss of sequestered metals from older cell layers, or change the affinity of new layers for particular trace metals. Differential binding affinities of these crystallins may, therefore, partially account for trace-metal differences observed in the lens nucleus and cortex.
Resumo:
We report quantum chaos phenomena in the atomic gravitational cavity. We consider the reflection of cold atoms from a temporally modulated evanescent wave. In the globally chaotic regime, for small modulation, the squared energy distribution as a function of time demonstrates dynamical localization. However, for larger modulation delocalization occurs.
Resumo:
This study compared state-owned enterprises (SOEs) and joint ventures (JVs) in light of organizational culture practices. Data were obtained via a survey participated by 781 respondents from five enterprises. Factoring identified four cultural dimensions: Participation, Teamwork, Supervision, and Meetings. All four dimensions, except Participation, were rated significantly higher by respondents from SOEs as compared to the ratings in JVs. Based on the findings, this study concluded that culture practices valued in one type of enterprise might be liability in another. The implication for management is to gear culture practices to the characteristics of the organization to make it successful.
Resumo:
We examined the influence of backrest inclination and vergence demand on the posture and gaze angle that-workers adopt to view visual targets placed in different vertical locations. In the study 12 participants viewed a small video monitor placed in 7 locations around a 0.65-m radius arc (from 650 below to 300 above horizontal eye height). Trunk posture was manipulated by changing the backrest inclination of an adjustable chair. Vergence demand was manipulated by using ophthalmic lenses and prisms to mimic the visual consequences of varying target distance. Changes in vertical target location caused large changes in atlantooccipital posture and gaze angle. Cervical posture was altered to a lesser extent by changes in vertical target location. Participants compensated for changes in backrest inclination by changing cervical posture, though they did not significantly alter atlanto-occipital posture and gaze angle. The posture adopted to view any target represents a compromise between visual and musculoskeletal demands. These results provide support for the argument that the optimal location of visual targets is at least 15 below horizontal eye level. Actual or potential applications of this work include the layout of computer workstations and the viewing of displays from a seated posture.
Resumo:
Deep-sea fish, defined as those living below 200 m, inhabit a most unusual photic environment, being exposed to two sources of visible radiation: very dim downwelling sunlight and bioluminescence, both of which are, in most cases. maximal at wavelengths around 450-500 nm. This paper summarises the reflective properties of the ocular tapeta often found in these animals the pigmentation of their lenses and the absorption characteristics of their visual pigments. Deepsea tapeta usually appear blue to the human observer. reflecting mainly shortwave radiation. However, reflection in other parts of the spectrum is not uncommon and uneven tapetal distribution across the retina is widespread. Perhaps surprisingly, given the fact that they live in a photon limited environment, the lenses of some deep-sea teleosts are bright yellow, absorbing much of the shortwave part of the spectrum. Such lenses contain a variety of biochemically distinct pigments which most likely serve to enhance the visibility of bioluminescent signals. Of the 195 different visual pigments characterised by either detergent extract or microspectrophotometry in the retinae of deep-sea fishes, cn. 87% have peak absorbances within the range 468-494 nm. Modelling shows that this is most likely an adaptation for the detection of bioluminescence. Around 13% of deep-sea fish have retinae containing more than one visual pigment. Of these, we highlight three genera of stomiid dragonfishes, which uniquely produce far red bioluminescence from suborbital photophores. Using a combination of longwave-shifted visual pigments and in one species (Malacosteus niger) a chlorophyll-related photosensitizer. these fish have evolved extreme red sensitivity enabling them to see their own bioluminescence and giving them a private spectral waveband invisible to other inhabitants of the deep-ocean. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Members of the billfish family are highly visual predatory teleosts inhabiting the open ocean. Little is known about their visual abilities in detail, but past studies have indicated that these fishes were:ere likely to be monochromats. This study however, presents evidence of two anatomically distinct cone types in billfish. The cells are arranged in a regular mosaic pattern of single and twin cones as in many fishes, and this arrangement suggests that the different cone types also show different spectral sensitivity, which is the basis for colour vision. First measurements using microspectrophotometry (MSP) revealed a peak absorption of the rod pigment at 484 nm, indicating that MSP, despite technical difficulties, will be a decisive tool in proving colour vision in these offshore fishes. When hunting, billfish such as the sailfish flash bright blue bars on their sides. This colour reflects largely in ultraviolet (UV) light at 350 nm as revealed by spectrophotometric measurements. Billfish lenses block light of wavelengths below 400 nm, presumably rendering the animal blind to the UV component of its own body colour. Interestingly at least two prey species of billfish have lenses transmitting light in the UV waveband and are therefore likely to perceive a large fraction of the UV peak found in the blue bar of the sailfish. The possible biological significance of this finding is discussed.
Resumo:
Wrasses (Labridae) are the second largest family of fishes on the: Great Barrier Reef (after the Gobiidae) and, in terms of morphology and lifestyle, one of the most diverse. They occupy all zones of the reef from the very shadow reef flats to deep slopes, feeding on a variety of fauna. Many wrasses also have elaborately patterned bodies and reflect a range of colours from ultraviolet (UV) to far red. As a first step to investigating the visual system of these fishes we measured the transmission properties of the ocular media of 36 species from the Great Barrier Reef, Australia, and Hawaii, California and the Florida Keys, USA. Transmission measurements were made of whole eyes with a window cut into the back, and also of isolated lenses and corneas. Based on the transmission properties of the corneas the species could be split into two distinct groups within which the exact wavelength of the cut-off was variable. One group had visibly yellow corneas, while the corneas of the other group appeared clear to human observers. Five species had ocular media that transmitted wavelengths below 400 nm, making a perception of UV wavelengths for those species possible. Possible functional roles for the different filler types are discussed.
Resumo:
I shall discuss the quantum and classical dynamics of a class of nonlinear Hamiltonian systems. The discussion will be restricted to systems with one degree of freedom. Such systems cannot exhibit chaos, unless the Hamiltonians are time dependent. Thus we shall consider systems with a potential function that has a higher than quadratic dependence on the position and, furthermore, we shall allow the potential function to be a periodic function of time. This is the simplest class of Hamiltonian system that can exhibit chaotic dynamics. I shall show how such systems can be realized in atom optics, where very cord atoms interact with optical dipole potentials of a far-off resonance laser. Such systems are ideal for quantum chaos studies as (i) the energy of the atom is small and action scales are of the order of Planck's constant, (ii) the systems are almost perfectly isolated from the decohering effects of the environment and (iii) optical methods enable exquisite time dependent control of the mechanical potentials seen by the atoms.
Resumo:
Recent spectroscopic and morphological observational studies of galaxies around NGC 1399 in the Fornax Cluster have discovered several ultracompact dwarf galaxies with intrinsic sizes of similar to 100 pc and absolute B-band magnitudes ranging from -13 to -11 mag. In order to elucidate the origin of these enigmatic objects, we perform numerical simulations on the dynamical evolution of nucleated dwarf galaxies orbiting NGC 1399 and suffering from its strong tidal gravitational field. Adopting a plausible scaling relation for dwarf galaxies, we find that the outer stellar components of a nucleated dwarf are totally removed. This is due to them being tidally stripped over the course of several passages past the central region of NGC 1399. The nucleus, however, manages to survive. We also find that the size and luminosity of the remnant are similar to those observed for ultracompact dwarf galaxies, if the simulated precursor nucleated dwarf has a mass of similar to 10(8) M.. These results suggest that ultracompact dwarf galaxies could have previously been more luminous dwarf spheroidal or elliptical galaxies with rather compact nuclei.
Resumo:
It is possible to detect gravitationally-lensed quasars spectroscopically if the spectra obtained during galaxy surveys are searched for the presence of quasar emission lines. The up-coming 6 degree Field (6dF) redshift survey on the United Kingdom Schmidt Telescope will involve obtaining similar to 10(5) spectra of near-infrared selected galaxies to a magnitude limit of K = 13. Applying previously developed techniques implies that at least one lens should be discovered in the 6dF survey, but that as many as ten could be found if quasars typically have B-J - K similar or equal to 8. In this model there could be up to fifty lensed quasars in the, sample, but most of them could only be detected by infrared spectroscopy.
Resumo:
The world's deep oceans are home to a number of teleosts with asymmetrical or tubular eyes. These immobile eyes possess large spherical lenses and subtend a large binocular visual field directed either dorsally or rostrally. Derived from a lateral non-tubular eye, the tubular eye is comprised of a thick main retina, subserving the rostrally or dorsally directed binocular visual field, and a thin accessory retina subserving, the lateral, monocular visual field. The main retina is thought to receive a focussed image, while the accessory retina is too close to the lens for a focussed image to be received. Several species also possess retinal diverticula, which are small evaginations of differentiated retina located in the rostrolateral wall of the eye and thought to increase the visual field. In order to investigate the spatial resolving power of these retinae (main, accessory and diverticulum), the distribution of cells within the ganglion cell layer was analysed from retinal wholemounts and sectioned material in ten species representing four genera. In all species, the main retina possesses a marked increase in cell density towards a specialised retinal region (area centralis), with a centro-peripheral gradient range between 7.1 and 60:1 and a peak density range of between 30 and 55 x 10(3) cells per mm(2). The accessory retinae and the transitional zone between the main and accessory retinae possess relatively low cell densities (between 1 and 10 x 10(3) cells per mm(2)) and lack an area centralis. Retinal diverticula examined in four species possess mean ganglion cell densities of between 7.2 and 109.4 x 10(3) cells per mm(2). Analyses of soma areas show that the ganglion cell layer of most species possesses cells with areas in a range of 8.0 to 15.4 mu m(2) in the main retina and between 15.1 and 17.4 mu m(2) in the accessory retina. The peak spatial resolving power of the main retina of the ten species varies from 4.1 to 9.1 cycles per degree. The positions of the retinal areae centrales relative to each species' binocular visual field are discussed in relation to what is known of feeding behaviour of these fishes in the deep-sea.