2 resultados para graph matching algorithms

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beyond the inherent technical challenges, current research into the three dimensional surface correspondence problem is hampered by a lack of uniform terminology, an abundance of application specific algorithms, and the absence of a consistent model for comparing existing approaches and developing new ones. This paper addresses these challenges by presenting a framework for analysing, comparing, developing, and implementing surface correspondence algorithms. The framework uses five distinct stages to establish correspondence between surfaces. It is general, encompassing a wide variety of existing techniques, and flexible, facilitating the synthesis of new correspondence algorithms. This paper presents a review of existing surface correspondence algorithms, and shows how they fit into the correspondence framework. It also shows how the framework can be used to analyse and compare existing algorithms and develop new algorithms using the framework's modular structure. Six algorithms, four existing and two new, are implemented using the framework. Each implemented algorithm is used to match a number of surface pairs. Results demonstrate that the correspondence framework implementations are faithful implementations of existing algorithms, and that powerful new surface correspondence algorithms can be created. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let G be a graph that admits a perfect matching. A forcing set for a perfect matching M of G is a subset S of M, such that S is contained in no other perfect matching of G. This notion has arisen in the study of finding resonance structures of a given molecule in chemistry. Similar concepts have been studied for block designs and graph colorings under the name defining set, and for Latin squares under the name critical set. There is some study of forcing sets of hexagonal systems in the context of chemistry, but only a few other classes of graphs have been considered. For the hypercubes Q(n), it turns out to be a very interesting notion which includes many challenging problems. In this paper we study the computational complexity of finding the forcing number of graphs, and we give some results on the possible values of forcing number for different matchings of the hypercube Q(n). Also we show an application to critical sets in back circulant Latin rectangles. (C) 2003 Elsevier B.V. All rights reserved.