42 resultados para grade and tonnage models
em University of Queensland eSpace - Australia
Resumo:
A test of the ability of a probabilistic neural network to classify deposits into types on the basis of deposit tonnage and average Cu, Mo, Ag, Au, Zn, and Pb grades is conducted. The purpose is to examine whether this type of system might serve as a basis for integrating geoscience information available in large mineral databases to classify sites by deposit type. Benefits of proper classification of many sites in large regions are relatively rapid identification of terranes permissive for deposit types and recognition of specific sites perhaps worthy of exploring further. Total tonnages and average grades of 1,137 well-explored deposits identified in published grade and tonnage models representing 13 deposit types were used to train and test the network. Tonnages were transformed by logarithms and grades by square roots to reduce effects of skewness. All values were scaled by subtracting the variable's mean and dividing by its standard deviation. Half of the deposits were selected randomly to be used in training the probabilistic neural network and the other half were used for independent testing. Tests were performed with a probabilistic neural network employing a Gaussian kernel and separate sigma weights for each class (type) and each variable (grade or tonnage). Deposit types were selected to challenge the neural network. For many types, tonnages or average grades are significantly different from other types, but individual deposits may plot in the grade and tonnage space of more than one type. Porphyry Cu, porphyry Cu-Au, and porphyry Cu-Mo types have similar tonnages and relatively small differences in grades. Redbed Cu deposits typically have tonnages that could be confused with porphyry Cu deposits, also contain Cu and, in some situations, Ag. Cyprus and kuroko massive sulfide types have about the same tonnages. Cu, Zn, Ag, and Au grades. Polymetallic vein, sedimentary exhalative Zn-Pb, and Zn-Pb skarn types contain many of the same metals. Sediment-hosted Au, Comstock Au-Ag, and low-sulfide Au-quartz vein types are principally Au deposits with differing amounts of Ag. Given the intent to test the neural network under the most difficult conditions, an overall 75% agreement between the experts and the neural network is considered excellent. Among the largestclassification errors are skarn Zn-Pb and Cyprus massive sulfide deposits classed by the neuralnetwork as kuroko massive sulfides—24 and 63% error respectively. Other large errors are the classification of 92% of porphyry Cu-Mo as porphyry Cu deposits. Most of the larger classification errors involve 25 or fewer training deposits, suggesting that some errors might be the result of small sample size. About 91% of the gold deposit types were classed properly and 98% of porphyry Cu deposits were classes as some type of porphyry Cu deposit. An experienced economic geologist would not make many of the classification errors that were made by the neural network because the geologic settings of deposits would be used to reduce errors. In a separate test, the probabilistic neural network correctly classed 93% of 336 deposits in eight deposit types when trained with presence or absence of 58 minerals and six generalized rock types. The overall success rate of the probabilistic neural network when trained on tonnage and average grades would probably be more than 90% with additional information on the presence of a few rock types.
Resumo:
The movement of chemicals through the soil to the groundwater or discharged to surface waters represents a degradation of these resources. In many cases, serious human and stock health implications are associated with this form of pollution. The chemicals of interest include nutrients, pesticides, salts, and industrial wastes. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and nonequilibrium between soil constituents, water, and solutes. A multiple sample percolation system (MSPS), consisting of 25 individual collection wells, was constructed to study the effects of localized soil heterogeneities on the transport of nutrients (NO3-, Cl-, PO43-) in the vadose zone of an agricultural soil predominantly dominated by clay. Very significant variations in drainage patterns across a small spatial scale were observed tone-way ANOVA, p < 0.001) indicating considerable heterogeneity in water flow patterns and nutrient leaching. Using data collected from the multiple sample percolation experiments, this paper compares the performance of two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR), and a two-region preferential flow model (TRM) suitable for modelling nonequilibrium transport. These results have implications for modelling solute transport and predicting nutrient loading on a larger scale. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The dynamic response of dry masonry columns can be approximated with finite-difference equations. Continuum models follow by replacing the difference quotients of the discrete model by corresponding differential expressions. The mathematically simplest of these models is a one-dimensional Cosserat theory. Within the presented homogenization context, the Cosserat theory is obtained by making ad hoc assumptions regarding the relative importance of certain terms in the differential expansions. The quality of approximation of the various theories is tested by comparison of the dispersion relations for bending waves with the dispersion relation of the discrete theory. All theories coincide with differences of less than 1% for wave-length-block-height (L/h) ratios bigger than 2 pi. The theory based on systematic differential approximation remains accurate up to L/h = 3 and then diverges rapidly. The Cosserat model becomes increasingly inaccurate for L/h < 2 pi. However, in contrast to the systematic approximation, the wave speed remains finite. In conclusion, considering its relative simplicity, the Cosserat model appears to be the natural starting point for the development of continuum models for blocky structures.
Resumo:
Recent advances in computer technology have made it possible to create virtual plants by simulating the details of structural development of individual plants. Software has been developed that processes plant models expressed in a special purpose mini-language based on the Lindenmayer system formalism. These models can be extended from their architectural basis to capture plant physiology by integrating them with crop models, which estimate biomass production as a consequence of environmental inputs. Through this process, virtual plants will gain the ability to react to broad environmental conditions, while crop models will gain a visualisation component. This integration requires the resolution of the fundamentally different time scales underlying the approaches. Architectural models are usually based on physiological time; each time step encompasses the same amount of development in the plant, without regard to the passage of real time. In contrast, physiological models are based in real time; the amount of development in a time step is dependent on environmental conditions during the period. This paper provides a background on the plant modelling language, then describes how widely-used concepts of thermal time can be implemented to resolve these time scale differences. The process is illustrated using a case study. (C) 1997 Elsevier Science Ltd.
Linking biophysical and genetic models to integrate physiology, molecular biology and plant breeding
Resumo:
ISCOMs(R) are typically 40 nm cage-like structures comprising antigen, saponin, cholesterol and phospholipid. ISCOMs(R) have been shown to induce antibody responses and activate T helper cells and cyrolytic T lymphocytes in a number of animal species, including non-human primates. Recent clinical studies have demonstrated that ISCOMs(R) are also able to induce antibody and cellular immune responses in humans. This review describes the current understanding of the ability of ISCOMs(R) to induce immune responses and the mechanisms underlying this property. Recent progress in the characterisation and manufacture of ISCOMs(R) will also be discussed. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Despite the strong influence of plant architecture on crop yield, most crop models either ignore it or deal with it in a very rudimentary way. This paper demonstrates the feasibility of linking a model that simulates the morphogenesis and resultant architecture of individual cotton plants with a crop model that simulates the effects of environmental factors on critical physiological processes and resulting yield in cotton. First the varietal parameters of the models were made concordant. Then routines were developed to allocate the flower buds produced each day by the crop model amongst the potential positions generated by the architectural model. This allocation is done according to a set of heuristic rules. The final weight of individual bolls and the shedding of buds and fruit caused by water, N, and C stresses are processed in a similar manner. Observations of the positions of harvestable fruits, both within and between plants, made under a variety of agronomic conditions that had resulted in a broad range of plant architectures were compared to those predicted by the model with the same environmental inputs. As illustrated by comparisons of plant maps, the linked models performed reasonably well, though performance of the fruiting point allocation and shedding algorithms could probably be improved by further analysis of the spatial relationships of retained fruit. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Remotely sensed data have been used extensively for environmental monitoring and modeling at a number of spatial scales; however, a limited range of satellite imaging systems often. constrained the scales of these analyses. A wider variety of data sets is now available, allowing image data to be selected to match the scale of environmental structure(s) or process(es) being examined. A framework is presented for use by environmental scientists and managers, enabling their spatial data collection needs to be linked to a suitable form of remotely sensed data. A six-step approach is used, combining image spatial analysis and scaling tools, within the context of hierarchy theory. The main steps involved are: (1) identification of information requirements for the monitoring or management problem; (2) development of ideal image dimensions (scene model), (3) exploratory analysis of existing remotely sensed data using scaling techniques, (4) selection and evaluation of suitable remotely sensed data based on the scene model, (5) selection of suitable spatial analytic techniques to meet information requirements, and (6) cost-benefit analysis. Results from a case study show that the framework provided an objective mechanism to identify relevant aspects of the monitoring problem and environmental characteristics for selecting remotely sensed data and analysis techniques.
Resumo:
Background: The results from previous studies have indicated that a pre-attentive component of the event-related potential (ERP), the mismatch negativity (MMN), may be an objective measure of the automatic auditory processing of phonemes and words. Aims: This article reviews the relationship between the MMN data and psycholinguistic models of spoken word processing, in order to determine whether the MMN may be used to objectively pinpoint spoken word processing deficits in individuals with aphasia. Main Contribution: This article outlines the ways in which the MMN data support psycholinguistic models currently used in the clinical management of aphasic individuals. Furthermore, the cell assembly model of the neurophysiological mechanisms underlying spoken word processing is discussed in relation to the MMN and psycholinguistic models. Conclusions: The MMN data support current theoretical psycholinguistic and neurophysiological models of spoken word processing. Future MMN studies that include normal and aphasic populations will further elucidate the role that the MMN may play in the clinical management of aphasic individuals.
Resumo:
The purpose of this prospective clinical study was to quantify the surgical margin necessary to maximise local disease control for canine soft tissue sarcoma of various grades. This was achieved via gross and histopathologic studies. Fourteen dogs underwent surgical treatment for 15 localised, measurable, subcutaneous sarcomas. Surgery and histopathologic evaluation were performed to standardised protocols. Regular examinations for local recurrence and distant metastases were performed for at least 12 months postoperatively. One hundred percent local disease control was achieved with deep margins >10mm and 93% one year disease-free survival with wide margins (i.e. >10mm laterally and one fascial plane or >10mm in depth). There was one case of recurrence. Fascial planes appear to act as biological barriers to local tumour invasion but this protective effect may be overcome with high-grade lesions.
Resumo:
The Wet Tropics World Heritage Area in Far North Queens- land, Australia consists predominantly of tropical rainforest and wet sclerophyll forest in areas of variable relief. Previous maps of vegetation communities in the area were produced by a labor-intensive combination of field survey and air-photo interpretation. Thus,. the aim of this work was to develop a new vegetation mapping method based on imaging radar that incorporates topographical corrections, which could be repeated frequently, and which would reduce the need for detailed field assessments and associated costs. The method employed G topographic correction and mapping procedure that was developed to enable vegetation structural classes to be mapped from satellite imaging radar. Eight JERS-1 scenes covering the Wet Tropics area for 1996 were acquired from NASDA under the auspices of the Global Rainforest Mapping Project. JERS scenes were geometrically corrected for topographic distortion using an 80 m DEM and a combination of polynomial warping and radar viewing geometry modeling. An image mosaic was created to cover the Wet Tropics region, and a new technique for image smoothing was applied to the JERS texture bonds and DEM before a Maximum Likelihood classification was applied to identify major land-cover and vegetation communities. Despite these efforts, dominant vegetation community classes could only be classified to low levels of accuracy (57.5 percent) which were partly explained by the significantly larger pixel size of the DEM in comparison to the JERS image (12.5 m). In addition, the spatial and floristic detail contained in the classes of the original validation maps were much finer than the JERS classification product was able to distinguish. In comparison to field and aerial photo-based approaches for mapping the vegetation of the Wet Tropics, appropriately corrected SAR data provides a more regional scale, all-weather mapping technique for broader vegetation classes. Further work is required to establish an appropriate combination of imaging radar with elevation data and other environmental surrogates to accurately map vegetation communities across the entire Wet Tropics.
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.