9 resultados para glucose blood level

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationship of body condition score ( BCS) and blood urea and ammonia to pregnancy outcome was examined in Italian Mediterranean Buffalo cows mated by AI. The study was conducted on 150 buffaloes at 145 +/- 83 days in milk that were fed a diet comprising 14.8% crude protein, 0.9 milk forage units . kg(-1) dry matter and a non- structural carbohydrate/ crude protein ratio of 2.14. The stage of the oestrous cycle was synchronised by the Ovsynch- TAI programme and blood urea and ammonia levels were assessed on the day of AI. Energy corrected milk ( ECM) production and BCS were recorded bi- weekly. The pregnancy risk was 46.7% and was slightly lower in buffaloes with BCS < 6.0 and BCS > 7.5. There were no significant differences in ECM, urea and ammonia between pregnant and non- pregnant buffaloes. However, pregnancy outcome was higher ( P = 0.02) in buffaloes with blood urea < 6.83 mmol . L-1. The likelihood of pregnancy for buffaloes with low urea blood level was 2.6 greater than for high urea level and exposure to a high urea level lowered the probability of pregnancy by about 0.25. The findings indicate that buffaloes are similar to cattle and increased blood levels of urea are associated with reduced fertility when animals are mated by AI.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

OBJECTIVE - We examined the associations of physical activity with fasting plasma glucose (FPG) and with 2-h postload plasma glucose (2-h PG) in men and women with low, moderate, and high waist circumference. RESEARCH DESIGN AND METHODS - The Australian Diabetes, Obesity and Lifestyle (AusDiab) study provided data on a population-based cross-sectional sample of 4,108 men and 5,106 women aged >= 25 years without known diabetes or health conditions that could affect physical activity. FPG and 2-h PG were obtained from an oral glucose tolerance test. Self-reported physical activity level was defined according to the current public health guidelines as active (>= 150 min/week across five or more sessions) or inactive (< 150 min/week and/or less than five sessions). Sex-specific quintiles of physical activity time were used to ascertain dose response. RESULTS - Being physically active and total physical activity time were independently and negatively associated with 2-h PG. When physical activity level was considered within each waist circumference category, 2-h PG was significantly lower in active high-waist circumference women (beta-0.30 [95% CI -0.59 to -0.01], P = 0.044) and active low-waist circumference men(beta-0.25 [-0.49 to -0.02],P = 0.036) compared with their inactive counterparts. Considered across physical activity and waist circumference categories, 2-h PG levels were not significantly different between active moderate-waist circumference participants and active low-waist circumference participants. Associations between physical activity and FPG were nonsignificant. CONCLUSIONS - There are important differences between 2-h PG and FPG related to physical activity. It appears that 2-h PG is more sensitive to the beneficial effects of physical activity, and these benefits occur across the waist circumference spectrum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Muscle glycogen inharmoniously regulates glycogen synthase activity, glucose uptake, and proximal insulin signaling. Am J Physiol Endocrinol Metab 290: E154-E162, 2006. First published August 23, 2005; doi:10.1152/ajpendo. 00330.2005.-Insulin-stimulated glucose uptake and incorporation of glucose into skeletal muscle glycogen contribute to physiological regulation of blood glucose concentration. In the present study, glucose handling and insulin signaling in isolated rat muscles with low glycogen (LG, 24-h fasting) and high glycogen (HG, refed for 24 h) content were compared with muscles with normal glycogen (NG, rats kept on their normal diet). In LG, basal and insulin-stimulated glycogen synthesis and glycogen synthase activation were higher and glycogen synthase phosphorylation (Ser645, Ser649, Ser653, Ser657) lower than in NG. GLUT4 expression, insulin-stimulated glucose uptake, and PKB phosphorylation were higher in LG than in NG, whereas insulin receptor tyrosyl phosphorylation, insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, and GSK-3 phosphorylation were unchanged. Muscles with HG showed lower insulin-stimulated glycogen synthesis and glycogen synthase activation than NG despite similar dephosphorylation. Insulin signaling, glucose uptake, and GLUT4 expression were similar in HG and NG. This discordant regulation of glucose uptake and glycogen synthesis in HG resulted in higher insulin-stimulated glucose 6-phosphate concentration, higher glycolytic flux, and intracellular accumulation of nonphosphorylated 2-deoxyglucose. In conclusion, elevated glycogen synthase activation, glucose uptake, and GLUT4 expression enhance glycogen resynthesis in muscles with low glycogen. High glycogen concentration per se does not impair proximal insulin signaling or glucose uptake. Insulin resistance is observed at the level of glycogen synthase, and the reduced glycogen synthesis leads to increased levels of glucose 6-phosphate, glycolytic flux, and accumulation of nonphosphorylated 2-deoxyglucose.