223 resultados para geographic range size

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister-clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nest use, home-range characteristics and nightly movements by the northern bettong (Bettongia tropica) were examined before and after a low- to moderate-intensity fire in sclerophyll woodland in north-eastern Australia using radio-telemetry. In all, 23 animals were radio-tracked at three-month intervals between February 1995 and May 1996. During November 1995 a low- intensity experimental fire burned the entire home range of most animals. The northern bettong appeared fairly catholic in choice of nest site, with a variety of nest locations and nesting materials used. Prior to the fire, nests were generally located in areas of dense cover, such as the skirts of grass trees (46%) or grass close to a log (29%). After fire removed most ground cover in the nesting areas of most animals, bettongs used remaining shelter such as boulder piles (45%), recently fallen trees (8%) and patches of unburnt vegetation (21%). Nest areas (10.1 ha) of males were significantly larger than those of females (5.4 ha). Home ranges of both sexes were large (59 ha) and most ranges lacked distinct core areas, suggesting that bettongs used all parts of their home ranges equally. High mean rates of nightly movement by the northern bettong indicated that large distances were moved within home ranges during nightly foraging. No significant fire-related changes were detected in home-range size, home-range location, nest-area location or mean rates of nightly movement, suggesting that the northern bettong is well adapted to the low- and medium-intensity fires that characterise its habitat.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Why does species richness vary so greatly across lineages? Traditionally, variation in species richness has been attributed to deterministic processes, although it is equally plausible that it may result from purely stochastic processes. We show that, based on the best available phylogenetic hypothesis, the pattern of cladogenesis among agamid lizards is not consistent with a random model, with some lineages having more species, and others fewer species, than expected by chance. We then use phylogenetic comparative methods to test six types of deterministic explanation for variation in species richness: body size, life history, sexual selection, ecological generalism, range size and latitude. Of eight variables we tested, only sexual size dimorphism and sexual dichromatism predicted species richness. Increases in species richness are associated with increases in sexual dichromatism but reductions in sexual size dimorphism. Consistent with recent comparative studies, we find no evidence that species richness is associated with small body size or high fecundity. Equally, we find no evidence that species richness covaries with ecological generalism, latitude or range size.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adult male Satin Bowerbirds build and decorate stick bowers to which they attract females for matings; females choose among males based on these complex bowers, decorations placed at these bowers, and displays consisting of vocalisations and posturing. Male Satin Bowerbirds undergo an extended period of delayed morphological maturation during which they retain female-like plumage and are assumed to learn adult male behavioural traits. Little is known, however, of how immature males acquire the ability to display and build and decorate bowers, except that they observe the displays of adult males at adults' bowers, and practise their own displays at both adults' and 'practice' bowers. We present data on the home ranges and movement patterns of six immature males, acquired through radio-tracking at the Bunya Mountains in south-east Queensland. Home-range size averaged 13.67 +/- 3.38 ha and immature males visited only some of the bowers located in their home ranges. On average, they visited 2.33 +/- 0.52 adults' bowers and 4.00 +/- 2.00 practice bowers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm. to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker. demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The somatic growth dynamics of green turtles ( Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the southeastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg ( similar to 6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length ( cm SCL year) 1) and, for two of the populations, also as change in body mass ( kg year) 1). Expected growth rates varied from ca. 0 - 2.5 cm SCL year) 1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is greater than or equal to 80 cm SCL. The expected size- specific growth rate functions for four populations sampled in the southeastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50 - 53 cm SCL ( similar to 18 - 23 kg) or ca. 13 - 19 years of age. The growth spurt for the Midway atoll population in the northwestern archipelago occurs at a much larger size ( ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35 - 40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be > 50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10 - 20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent attempts to explain the susceptibility of vertebrates to declines worldwide have largely focused on intrinsic factors such as body size, reproductive potential, ecological specialization, geographical range and phylogenetic longevity. Here, we use a database of 145 Australian marsupial species to test the effects of both intrinsic and extrinsic factors in a multivariate comparative approach. We model five intrinsic (body size, habitat specialization, diet, reproductive rate and range size) and four extrinsic (climate and range overlap with introduced foxes, sheep and rabbits) factors. We use quantitative measures of geographical range contraction as indices of decline. We also develop a new modelling approach of phylogenetically independent contrasts combined with imputation of missing values to deal simultaneously with phylogenetic structuring and missing data. One extrinsic variable-geographical range overlap with sheep-was the only consistent predictor of declines. Habitat specialization was independently but less consistently associated with declines. This suggests that extrinsic factors largely determine interspecific variation in extinction risk among Australian marsupials, and that the intrinsic factors that are consistently associated with extinction risk in other vertebrates are less important in this group. We conclude that recent anthropogenic changes have been profound enough to affect species on a continent-wide scale, regardless of their intrinsic biology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ixodes holocyclus has a narrow, discontinuous distribution along the east coast of Australia. We studied ticks from 17 localities throughout the geographic range of this tick. The ITS2 of I. holocyclus is 793 bp long. We found nucleotide variation at eight of the 588 nucleotide positions (1.4%) that were compared for all ticks. There were eight different nucleotide sequences. Most sequences were not restricted to a particular geographic region. However, sequences F, G and H, which had an adenine at position 197, were found only in the far north of Queensland - all other ticks had a guanine at this position. The low level of intraspecific variation in this tick (0.7%) contrasts with the sequence divergence between L holocyclus and its close relative, I. cornuatus (13.1 %). These data indicate that L holocyclus does not contain cryptic species despite possible geographic isolation of some populations. We conclude that variation in the ITS2 is likely to be informative about the phylogeny of the group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate habitat mapping is critical to landscape ecological studies such as required for developing and testing Montreal Process indicator 1.1e, fragmentation of forest types. This task poses a major challenge to remote sensing, especially in mixedspecies, variable-age forests such as dry eucalypt forests of subtropical eastern Australia. In this paper, we apply an innovative approach that uses a small section of one-metre resolution airborne data to calibrate a moderate spatial resolution model (30 m resolution; scale 1:50 000) based on Landsat Thematic Mapper data to estimate canopy structural properties in St Marys State Forest, near Maryborough, south-eastern Queensland. The approach applies an image-processing model that assumes each image pixel is significantly larger than individual tree crowns and gaps to estimate crown-cover percentage, stem density and mean crown diameter. These parameters were classified into three discrete habitat classes to match the ecology of four exudivorous arboreal species (yellowbellied glider Petaurus australis, sugar glider P. breviceps, squirrel glider P. norfolcensis , and feathertail glider Acrobates pygmaeus), and one folivorous arboreal marsupial, the greater glider Petauroides volans. These species were targeted due to the known ecological preference for old trees with hollows, and differences in their home range requirements. The overall mapping accuracy, visually assessed against transects (n = 93) interpreted from a digital orthophoto and validated in the field, was 79% (KHAT statistic = 0.72). The KHAT statistic serves as an indicator of the extent that the percentage correct values of the error matrix are due to ‘true’ agreement verses ‘chance’ agreement. This means that we are able to reliably report on the effect of habitat loss on target species, especially those with a large home range size (e.g. yellow-bellied glider). However, the classified habitat map failed to accurately capture the spatial patterning (e.g. patch size and shape) of stands with a trace or sub-dominance of senescent trees. This outcome makes the reporting of the effects of habitat fragmentation more problematic, especially for species with a small home range size (e.g. feathertail glider). With further model refinement and validation, however, this moderateresolution approach offers an important, cost eff e c t i v e advancement in mapping the age of dry eucalypt forests in the region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissociated remains of the acanthodian Poracanthodes punctatus are described from Upper Silurian (Pridoli) limestones of the Roberts Mountains Formation at Pete Hanson Creek, Eureka County, Nevada. The vertebrate microremains in sample residues comprise scales, a dentigerous jaw bone fragment, and a fin spine fragment assigned to P. punctatus, plus one possible acanthothoracid placoderm scale. Some macroremains from the same locality are also assigned to P. punctatus. This taxon has been nominated as, a zone fossil for the Silurian vertebrate biozonal scheme, and its presence has been recorded throughout the circum-Arctic region. Identification of the taxon in Nevada extends its known geographic range.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The movements of the ricefield rats (Rattus argentiventer) near a trap-barrier system (TBS) were assessed in lowland flood-irrigated rice crops in West Java, Indonesia, to test the hypothesis that a TBS with a 'trap-crop' modifies the movements of rats within 200 m from the trap-crop. The home range use and locations of rat burrows were assessed using radiotelemetry at two sites, one with a TBS with trap-crop (Treatment site, the crop inside the fence was planted 3 weeks earlier than the surrounding crop) and the other with a TBS without trap-crop (Control site, the crop inside the fence was planted at the same time as the surrounding crop). Each TBS was a 50 x 50 m plastic fence with eight multiple-capture rat traps set at the base. More than 700 rats were caught in the TBS with trap-crop, whereas only 10 rats were caught in the TBS without trap-crop. The home range size of females was significantly smaller at the Treatment site (0.96 ha) than the Control site (2.99 ha), but there was no difference for males. Seventy-eight per cent of rats caught in the TBS and fitted with radiocollars had their daytime burrow locations within 200 m of the TBS. We could not determine if the rats caught in the TBS were residents or transients according to demographic parameters. Our results support the hypothesis that a TBS with a trap-crop protects the surrounding rice crop out to a distance of at least 200 m.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fish species around the world are parasitized by myxozoans of the genus Kudoa, several of which infect and cause damage of commercial importance. In particular, Kudoa thyrsites and Kudoa amamiensis infect certain cultured fish species causing damage to muscle tissue, making the fish unmarketable. Kudoa thyrsites has a broad host and geographic range infecting over 35 different fish species worldwide, while K. amamiensis has only been reported from a few species in Japanese waters. Through morphological and molecular analyses we have confirmed the presence of both of these parasites in eastern Australian waters. In addition, a novel Kudoa species was identified, having stellate spores, with one polar capsule larger than the other three. The SSU rDNA sequence of this parasite was 1.5% different from K. thyrsites and is an outlier from K. thyrsites representatives in a phylogenetic analysis. Furthermore, the spores of this parasite are distinctly smaller than those of K. thyrsites, and thus it is described as Kudoa minithyrsites n. sp. Although the potential effects of K. minithyrsites n. sp. on its fish hosts are unknown, both K. thyrsites and K. amamiensis are associated with flesh quality problems in some cultured species and may be potential threats to an expanding aquaculture industry in Australia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The genetic divergence and evolution of new species within the geographic range of a single population (sympatric speciation) contrasts with the well-established doctrine that speciation occurs when populations become geographically isolated (allopatric speciation). Although there is considerable theoretical support for sympatric speciation [1, 2], this mode of diversification remains controversial, at least in part because there are few well-supported examples [3]. We use a combination of molecular, ecological, and biogeographical data to build a case for sympatric speciation by host shift in a new species of coral-dwelling fish (genus Gobiodon). We propose that competition for preferred coral habitats drives host shifts in Gobiodon and that the high diversity of corals provides the source of novel, unoccupied habitats. Disruptive selection in conjunction with strong host fidelity could promote rapid reproductive isolation and ultimately lead to species divergence. Our hypothesis is analogous to sympatric speciation by host shift in phytophagous insects [4, 5] except that we propose a primary role for intraspecific competition in the process of speciation. The fundamental similarity between these fishes and insects is a specialized and intimate relationship with their hosts that makes them ideal candidates for speciation by host shift.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aeolid nudibranch Pteraeolidia ianthina hosts symbiotic dinoflagellates in the same way as many reef-building corals. This widespread Indo-Pacific sea slug ranges from tropical to temperate waters, and offers a unique opportunity to examine a symbiosis that occurs over a large latitudinal gradient. We used partial 28S and 18S nuclear ribosomal (nr) DNA to examine the genetic diversity of the Symbiodinium dinoflagellates contained within F ianthina. We detected Symbiodinium from genetic clades A, B, C and D. P. ianthina from tropical regions (Singapore, Sulawesi) host Symbiodinium clade C or D or both; those from the subtropical eastern Australian coast (Heron Island, Mon Repo, Moreton Bay, Tweed Heads) host Symbiodinium clade C, but those from the temperate southeastern Australian coastline (Port Stephens, Bare Island) host clade A or B or both. The Symbiodinium populations within 1 individual nudibranch could be homogeneous or heterogeneous at inter- or intra-clade levels (or both). Our results suggested that the Pteraeolidia-Symbiodinium symbiosis is flexible and favours symbiont phylotypes best adapted for that environment. This flexibility probably reflects the function of the symbiont clade in relation to the changing environments experienced along the latitudinal range, and facilitates the large geographic range of P. ianthina.