6 resultados para genotypic diversity

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sunflower rust caused by Puccinia helianthi is the most important disease of sunflower in Australia with the potential to cause significant yield losses in susceptible hybrids. Rapid and frequent virulence changes in the rust fungus population limit the effective lifespan of commercial cultivars and impose constant pressure on breeding programs to identify and deploy new sources of resistance. This paper contains a synopsis of virulence data accumulated over 25 years, and more recent studies of genotypic diversity and sexual recombination. We have used this synopsis, generated from both published and unpublished data, to propose the origin, evolution and distribution of new pathotypes of P. helianthi. Virulence surveys revealed that diverse pathotypes of P. helianthi evolve in wild sunflower populations, most likely because sexual recombination and subsequent selection of recombinant pathotypes occurs there. Wild sunflower populations provide a continuum of genetically heterogeneous hosts on which P. helianthi can potentially complete its sexual cycle under suitable environmental conditions. Population genetics analysis of a worldwide collection of P. helianthi indicated that Australian isolates of the pathogen are more diverse than non-Australian isolates. Additionally, the presence of the same pathotype in different genotypic backgrounds supported evidence from virulence data that sexual recombination has occurred in the Australian population of P. helianthi at some time. A primary aim of the work described was to apply our knowledge of pathotype evolution to improve resistance in sunflower to sunflower rust. Molecular markers were identified for a number of previously uncharacterised sunflower rust R-genes. These markers have been used to detect resistance genes in breeding lines and wild sunflower germplasm. A number of virulence loci that do not recombine were identified in P. helianthi. The resistance gene combinations corresponding to these virulence loci are currently being introgressed with breeding lines to generate hybrids with durable resistance to sunflower rust.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genotypic diversity in Fusarium pseudograminearum and F. graminearum from Australia and the relationship between diversity and pathogen aggressiveness for head blight and/or crown rot of wheat were examined. Amplified fragment length polymorphism (AFLP) analysis revealed a high level of genotypic diversity within each species. Sixty-three of the 149 AFLP loci were significantly different between the two species and 70 of 72 F. pseudograminearum and 56 of 59 F. graminearum isolates had distinct haplotypes. When head blight and crown rot severity data from a recently published work on isolates representing the entire range of aggressiveness were used, only the genotypic diversity of F. pseudograminearum was significantly associated with its aggressiveness for the two diseases. Cluster analyses clearly demonstrated the polyphyletic structures that exist in both pathogen populations. The spatial diversity within F. graminearum was high within a single field, while frequent gene flow (N-m similar to 14) and a low fixation index (G(st) = 0.03) were recorded among F. pseudograminearum isolates from the adjacent states of New South Wales and Queensland. The differences in population structure between the heterothallic F. pseudograminearum (teleomorph G. coronicola) and the homothallic F. graminearum (teleomorph G. zeae) were not as pronounced as expected given their contrasting mating systems. Neither species was panmictic or strictly clonal. This points to sexual recombination in F. pseudograminearum, suggesting that ascospores of G. coronicola may also play a role in its biology and epidemiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-copy restriction fragment length polymorphism (RFLP) markers were used to determine the genetic structure of the global population of Mycosphaerella musicola, the cause of Sigatoka (yellow Sigatoka) disease of banana. The isolates of M. musicola examined were grouped into four geographic populations representing Africa, Latin America and the Caribbean, Australia and Indonesia. Moderate levels of genetic diversity were observed for most of the populations (H = 0.22-0.44). The greatest genetic diversity was found in the Indonesian population (H = 0.44). Genotypic diversity was close to 50% in all populations. Population differentiation tests showed that the geographic populations of Africa, Latin America and the Caribbean, Australia and Indonesia were genetically different populations. Using F-ST tests, very high levels of genetic differentiation were detected between all the population pairs (F-ST > 0.40), with the exception of the Africa and Latin America-Caribbean population pair. These two populations differed by only 3% (F-ST = 0.03), and were significantly different (P < 0.05) from all other population pairs. The high level of genetic diversity detected in Indonesia in comparison to the other populations provides some support for the theory that M. musicola originated in South-east Asia and that M. musicola populations in other regions were founded by isolates from the South-east Asian region. The results also suggest the migration of M. musicola between Africa and the Latin America-Caribbean region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mycosphaerello musicolo causes Sigatoka disease of banana and is endemic to Australia. The population genetic structure of M. musicola in Australia was examined by applying single-copy restriction fragment length polymorphism probes to hierarchically sampled populations collected along the Australian cast coast. The 363 isolates studied were from 16 plantations at 12 sites in four different regions, and comprised 11 populations. These populations displayed moderate levels of gene diversity (H = 0.142 to 0.369) and similar levels of genotypic richness and evenness. Populations were dominated by unique genotypes, but isolates sharing the same genotype (putative clones) were detected. Genotype distribution was highly localized within each population, and the majority of putative clones were detected for isolates sampled from different sporodochia in the same lesion or different lesions on a plant. Multilocus gametic disequilibrium tests provided further evidence of a degree of clonality within the populations at the plant scale. A complex pattern of population differentiation was detected for M. musicola in Australia. Populations sampled from plantations outside the two major production areas were genetically very different to all other populations. Differentiation was much lower between populations of the two major production areas, despite their geographic separation of over 1,000 km. These results suggest low gene flow at the continental scale due to limited spore dispersal and the movement of infected plant material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adaptation to localised thermal regimes is facilitated by restricted gene flow, ultimately leading to genetic divergence among populations and differences in their physiological tolerances. Allozyme analysis of six polymorphic loci was used to assess genetic differentiation between nine populations of the reef-building coral Acropora millepora over a latitudinal temperature gradient on the inshore regions of the Great Barrier Reef (GBR). Small but significant genetic differentiation indicative of moderate levels of gene flow (pairwise F-ST 0.023 to 0.077) was found between southern populations of A. millepora in cooler regions of the GBR and the warmer, central or northern GBR populations. Patterns of genetic differentiation at these putatively neutral allozyme loci broadly matched experimental variation in thermal tolerance and were consistent with local thermal regimes (warmest monthly-averages) for the A. millepora populations examined. It is therefore hypothesized that natural selection has influenced the thermal tolerance of the A. millepora populations examined and greater genetic divergence is likely to be revealed by examination of genetic markers under the direct effects of natural selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coral reefs are in serious decline, and research in support of reef management objectives is urgently needed. Reef connectivity analyses have been highlighted as one of the major future research avenues necessary for implementing effective management initiatives for coral reefs. Despite the number of new molecular genetic tools and the wealth of information that is now available for population-level processes in many marine disciplines, scleractinian coral population genetic information remains surprisingly limited. Here we examine the technical problems and approaches used, address the reasons contributing to this delay in understanding, and discuss the future of coral population marker development. Considerable resources are needed to target the immediate development of an array of relevant genetic markers coupled with the rapid production of management focused data in order to help conserve our globally threatened coral reef resources.