27 resultados para genetic variation

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most scleractinian coral species are widely distributed across the tropical and subtropical Indo-Pacific. However, the genetic connectivity between populations of corals separated by large distances (thousands of kilometers) is not well known. We analyzed variability in the nucleotide sequence of the internal transcribed spacer-1 (ITS-1) of the nuclear ribosomal gene unit in the ubiquitous coral Stylophora pistillata, across the western Pacific Ocean. Eight populations from Japan, Malaysia, and the northern and southern Great Barrier Reef (GBR) were studied. Phylogenetic analyses and analysis of molecular variance (AMOVA) clearly revealed that there is panmixia among these coral populations. AMOVA showed that ITS-1 sequence variability was greater within populations (78.37%) than among populations (12.06%). These patterns strongly suggest high levels of connectivity across the species' latitudinal distribution range in the western Pacific, as is seen in many marine invertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants accumulate isotopes of carbon at different rates because of discrimination against C-13 relative to C-12. In plants that fix carbon by the C-3 pathway, the amount of discrimination correlates negatively with transpiration efficiency (TE) where TE is the amount of dry matter accumulated per unit water transpired. Therefore, carbon isotope discrimination (Delta) has become a useful tool for selecting genotypes with improved TE and performance in dry environments. Surveys of 161 sunflower (Helianthus spp.) genotypes of diverse origin revealed a large and unprecedented range of genetic variation for Delta (19.5-23.8parts per thousand). A strong negative genetic correlation (r(g)) between TE and Delta (r(g) = -0.87, P < 0.001) was observed in glasshouse studies. Gas exchange measurements of field grown plants indicated that Delta was strongly correlated with stomatal conductance to water vapor (g), (r(g) 0.64, P < 0.01), and the ratio of net assimilation rate (A) to g, (r(g) = 0.86, P < 0.001), an instantaneous measure of TE. Genotype CMSHA89MAX1 had the lowest TE (and highest Delta) of all genotypes tested in these studies and low yields in hybrid combination. Backcrossing studies showed that the TE of this genotype was due to an adverse effect of the MAX1 cytoplasm, which was inherited from the diploid perennial H. maximiliani Schrader. Overall, these studies suggested that there is an excellent opportunity for breeders to develop sunflower germplasm with improved TE. This can be achieved, in part, by avoiding cytoplasms such as the MAX1 cytoplasm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted a demographic and genetic study to investigate the effects of fragmentation due to the establishment of an exotic softwood plantation on populations of a small marsupial carnivore, the agile antechinus (Antechinus agilis), and the factors influencing the persistence of those populations in the fragmented habitat. The first aspect of the study was a descriptive analysis of patch occupancy and population size, in which we found a patch occupancy rate of 70% among 23 sites in the fragmented habitat compared to 100% among 48 sites with the same habitat characteristics in unfragmented habitat. Mark-recapture analyses yielded most-likely population size estimates of between 3 and 85 among the 16 occupied patches in the fragmented habitat. Hierarchical partitioning and model selection were used to identify geographic and habitat-related characteristics that influence patch occupancy and population size. Patch occupancy was primarily influenced by geographic isolation and habitat quality (vegetation basal area). The variance in population size among occupied sites was influenced primarily by forest type (dominant Eucalyptus species) and, to a lesser extent, by patch area and topographic context (gully sites had larger populations). A comparison of the sex ratios between the samples from the two habitat contexts revealed a significant deficiency of males in the fragmented habitat. We hypothesise that this is due to male-biased dispersal in an environment with increased dispersal-associated mortality. The population size and sex ratio data were incorporated into a simulation study to estimate the proportion of genetic diversity that would have been lost over the known timescale since fragmentation if the patch populations had been totally isolated. The observed difference in genetic diversity (gene diversity and allelic richness at microsatellite and mitochondrial markers) between 16 fragmented and 12 unfragmented sites was extremely low and inconsistent with the isolation of the patch populations. Our results show that although the remnant habitat patches comprise approximately 2% of the study area, they can support non-isolated populations. However, the distribution of agile antechinus populations in the fragmented system is dependent on habitat quality and patch connectivity. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary change results from selection acting on genetic variation. For migration to be successful, many different aspects of an animal's physiology and behaviour need to function in a co-coordinated way. Changes in one migratory trait are therefore likely to be accompanied by changes in other migratory and life-history traits. At present, we have some knowledge of the pressures that operate at the various stages of migration, but we know very little about the extent of genetic variation in various aspects of the migratory syndrome. As a consequence, our ability to predict which species is capable of what kind of evolutionary change, and at which rate, is limited. Here, we review how our evolutionary understanding of migration may benefit from taking a quantitative-genetic approach and present a framework for studying the causes of phenotypic variation. We review past research, that has mainly studied single migratory traits in captive birds, and discuss how this work could be extended to study genetic variation in the wild and to account for genetic correlations and correlated selection. In the future, reaction-norm approaches may become very important, as they allow the study of genetic and environmental effects on phenotypic expression within a single framework, as well as of their interactions. We advocate making more use of repeated measurements on single individuals to study the causes of among-individual variation in the wild, as they are easier to obtain than data on relatives and can provide valuable information for identifying and selecting traits. This approach will be particularly informative if it involves systematic testing of individuals under different environmental conditions. We propose extending this research agenda by using optimality models to predict levels of variation and covariation among traits and constraints. This may help us to select traits in which we might expect genetic variation, and to identify the most informative environmental axes. We also recommend an expansion of the passerine model, as this model does not apply to birds, like geese, where cultural transmission of spatio-temporal information is an important determinant of migration patterns and their variation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stabilizing selection has been predicted to change genetic variances and covariances so that the orientation of the genetic variance-covariance matrix (G) becomes aligned with the orientation of the fitness surface, but it is less clear how directional selection may change G. Here we develop statistical approaches to the comparison of G with vectors of linear and nonlinear selection. We apply these approaches to a set of male sexually selected cuticular hydrocarbons (CHCs) of Drosophila serrata. Even though male CHCs displayed substantial additive genetic variance, more than 99% of the genetic variance was orientated 74.9degrees away from the vector of linear sexual selection, suggesting that open-ended female preferences may greatly reduce genetic variation in male display traits. Although the orientation of G and the fitness surface were found to differ significantly, the similarity present in eigenstructure was a consequence of traits under weak linear selection and strong nonlinear ( convex) selection. Associating the eigenstructure of G with vectors of linear and nonlinear selection may provide a way of determining what long-term changes in G may be generated by the processes of natural and sexual selection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Because the determinants of anxiety and depression in late adolescence and early adulthood may differ from those in later life, we investigated the temporal stability and magnitude of genetic and environmental correlates of symptoms of anxiety and depression across the life span. Data were collected from a population-based Australian sample of 4364 complete twin pairs and 777 singletons aged 20 to 96 years who were followed-up over three studies between 1980 and 1996. Each study contained the 14-item self-report DSSI/sAD scale which was used to measure recently experienced symptoms of anxiety and depression. Symptom scores were then divided and assigned to age intervals according to each subject's age at time of participation. We fitted genetic simplex models to take into account the longitudinal nature of the data. For male anxiety and depression, the best fitting simplex models comprised a single genetic innovation at age 20 which was transmitted, and explained genetic variation in anxiety and depression at ages 30, 40, 50 and 60. Most of the lifetime genetic variation in female anxiety and depression could also be explained by innovations at age 20 which were transmitted to all other ages; however, there were also smaller age-dependent genetic innovations at 30 for anxiety and at 40 and 70 for depression. Although the genetic determinants of anxiety and depression appear relatively stable across the life-span for males and females, there is some evidence to support additional mid-life and late age gene action in females for depression. The fact that mid-life onset for anxiety occurs one decade before depression is also consistent with a causal relationship (anxiety leading to depression) between these conditions. These findings have significance for large scale depression prevention projects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Information processing speed, as measured by elementary cognitive tasks, is correlated with higher order cognitive ability so that increased speed relates to improved cognitive performance. The question of whether the genetic variation in Inspection Time (IT) and Choice Reaction Time (CRT) is associated with IQ through a unitary factor was addressed in this multivariate genetic study of IT, CRT, and IQ subtest scores. The sample included 184 MZ and 206 DZ twin pairs with a mean age of 16.2 years (range 15-18 years). They were administered a visual (pi-figure) IT task, a two-choice RT task, five computerized subtests of the Multidimensional Aptitude Battery, and the digit symbol substitution subtest from the WAIS-R. The data supported a factor model comprising a general, three group (verbal ability, visuospatial ability, broad speediness), and specific genetic factor structure, a shared environmental factor influencing all tests but IT, plus unique environmental factors that were largely specific to individual measures. The general genetic factor displayed factor loadings ranging between 0.35 and 0.66 for the IQ subtests, with IT and CRT loadings of -0.47 and -0.24, respectively. Results indicate that a unitary factor is insufficient to describe the entire relationship between cognitive speed measures and all IQ subtests, with independent genetic effects explaining further covariation between processing speed (especially CRT) and Digit Symbol.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sustainable forest restoration and management practices require a thorough understanding of the influence that habitat fragmentation has on the processes shaping genetic variation and its distribution in tree populations. We quantified genetic variation at isozyme markers and chloroplast DNA (cpDNA), analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in severely fragmented populations of Sorbus aucuparia (Rosaceae) in a single catchment (Moffat) in southern Scotland. Remnants maintain surprisingly high levels of gene diversity (H-E) for isozymes (H-E = 0.195) and cpDNA markers (H-E = 0.490). Estimates are very similar to those from non-fragmented populations in continental Europe, even though the latter were sampled over a much larger spatial scale. Overall, no genetic bottleneck or departures from random mating were detected in the Moffat fragments. However, genetic differentiation among remnants was detected for both types of marker (isozymes Theta(n) = 0.043, cpDNA Theta(c) = 0.131; G-test, P-value < 0.001). In this self-incompatible, insect-pollinated, bird-dispersed tree species, the estimated ratio of pollen flow to seed flow between fragments is close to 1 (r = 1.36). Reduced pollen-mediated gene flow is a likely consequence of habitat fragmentation, but effective seed dispersal by birds is probably helping to maintain high levels of genetic diversity within remnants and reduce genetic differentiation between them.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and Aims Quercus petraea colonized Ireland after the last glaciation from refugia on mainland Europe. Deforestation. however. beginning in Neolithic times, has resulted in small, scattered forest fragments, now covering less than 12 000 ha. Methods Plastid (three fragments) and microsatellite variation (13 loci) were characterized in seven Irish populations sampled along a north-south gradient. Using Bayesian approaches and Wright's F-statistics, the effects of colonization and fragmentation on the genetic structure and mating patterns of extant oak populations were investigated. Key-Results All Populations possessed cytotypes common to the Iberian Peninsula. Despite the distance from the refugial core and the extensive deforestation in Ireland, nuclear genetic variation was high and comparable to mainland Europe. Low population differentiation was observed within Ireland and populations showed no evidence for isolation by distance. As expected of a marker with an effective Population size of one-quarter relative to the nuclear genome, plastid variation indicated higher differentiation. Individual inbreeding coefficients indicated high levels of outcrossing. Conclusions Consistent with a large effective Population size in the historical migrant gene pool and/or with high gene flow among populations, high within-population diversity and low population differentiation was observred within Ireland. It is proposed that native Q. petraea populations in Ireland share a common phylogeographic history and that the present genetic structure does not reflect founder effects. (C) 2004 Annals of Botany Company.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. Genetic influences have been shown to play a major role in determining the risk of alcohol dependence (AD) in both women and men; however, little attention has been directed to identifying the major sources of genetic variation in AD risk. Method. Diagnostic telephone interview data from young adult Australian twin pairs born between 1964 and 1971 were analyzed. Cox regression models were fitted to interview data from a total of 2708 complete twin pairs (690 MZ female, 485 MZ male, 500 DZ female, 384 DZ male, and 649 DZ female/male pairs). Structural equation models were fitted to determine the extent of residual genetic and environmental influences on AD risk while controlling for effects of sociodemographic and psychiatric predictors on risk. Results. Risk of AD was increased in males, in Roman Catholics, in those reporting a history of major depression, social anxiety problems, and conduct disorder, or (in females only) a history of suicide attempt and childhood sexual abuse; but was decreased in those reporting Baptist, Methodist, or Orthodox religion, in those who reported weekly church attendance, and in university-educated males. After allowing for the effects of sociodemographic and psychiatric predictors, 47 % (95 % CI 28-55) of the residual variance in alcoholism risk was attributable to additive genetic effects, 0 % (95 % CI 0-14) to shared environmental factors, and 53 % (95 % CI 45-63) to non-shared environmental influences. Conclusions. Controlling for other risk factors, substantial residual heritability of AD was observed, suggesting that psychiatric and other risk factors play a minor role in the inheritance of AD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sources of covariation among cognitive measures of Inspection Time, Choice Reaction Time, Delayed Response Speed and Accuracy, and IQ were examined in a classical twin design that included 245 monozygotic (MZ) and 298 dizygotic (DZ) twin pairs. Results indicated that a factor model comprising additive genetic and unique environmental effects was the most parsimonious. In this model, a general genetic cognitive factor emerged with factor loadings ranging from 0.28 to 0.64. Three other genetic factors explained the remaining genetic covariation between various speed and Delayed Response measures with IQ. However, a large proportion of the genetic variation in verbal (54%) and performance (25%) IQ was unrelated to these lower order cognitive measures. The independent genetic IQ variation may reflect information processes not captured by the elementary cognitive tasks, Inspection Time and Choice Reaction Time, nor our working memory task, Delayed Response. Unique environmental effects were mostly nonoverlapping, and partly represented test measurement error.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An absence of genetic variance in traits under selection is perhaps the oldest explanation for a limit to evolutionary change, but has also been the most easily dismissed. We review a range of theoretical and empirical results covering single traits to more complex multivariate systems, and show that an absence of genetic variance may be more common than is currently appreciated. From a single-trait perspective, we highlight that it is becoming clear that some trait types do not display significant levels of genetic variation, and we raise the possibility that species with restricted ranges may differ qualitatively from more widespread species in levels of genetic variance in ecologically important traits. A common misconception in many life-history studies is that a lack of genetic variance in single traits, and genetic constraints as a consequence of bivariate genetic correlations, are different causes of selection limits. We detail how interpretations of bivariate patterns are unlikely to demonstrate genetic limits to selection in many cases. We advocate a multivariate definition of genetic constraints that emphasizes the presence (or otherwise) of genetic variance in the multivariate direction of selection. For multitrait systems, recent results using longer term studies of organisms, in which more is understood concerning what traits may be under selection, have indicated that selection may exhaust genetic variance, resulting in a limit to the selection response.