11 resultados para genetic origin
em University of Queensland eSpace - Australia
Resumo:
Five microsatellite loci are presented for prickly acacia, Acacia nilotica ssp. indica (Benth.) Brenan, an introduced weed of national significance in Australia. These microsatellite loci were obtained through the construction of an enriched library and their use will enable us to determine the genetic origin and extent of genetic diversity of this weed in Australia.
Resumo:
The cyclotides are a family of small disulfide rich proteins that have a cyclic peptide backbone and a cystine knot formed by three conserved disulfide bonds. The combination of these two structural motifs contributes to the exceptional chemical, thermal and enzymatic stability of the cyclotides, which retain bioactivity after boiling. They were initially discovered based on native medicine or screening studies associated with some of their various activities, which include uterotonic action, anti-HIV activity, neurotensin antagonism, and cytotoxicity. They are present in plants from the Rubiaceae, Violaceae and Cucurbitaccae families and their natural function in plants appears to be in host defense: they have potent activity against certain insect pests and they also have antimicrobial activity. There are currently around 50 published sequences of cyclotides and their rate of discovery has been increasing over recent years. Ultimately the family may comprise thousands of members. This article describes the background to the discovery of the cyclotides, their structural characterization, chemical synthesis, genetic origin, biological activities and potential applications in the pharmaceutical and agricultural industries. Their unique topological features make them interesting from a protein folding perspective. Because of their highly stable peptide framework they might make useful templates in drug design programs, and their insecticidal activity opens the possibility of applications in crop protection.
Resumo:
The SOX family of transcription factors are found throughout the animal kingdom and are important in a variety of developmental contexts. Genome analysis has identified 20 Sox genes in human and mouse, which can be subdivided into 8 groups, based on sequence comparison and intron-exon structure. Most of the SOX groups identified in mammals are represented by a single SOX sequence in invertebrate model organisms, suggesting a duplication and divergence mechanism has operated during vertebrate evolution. We have now analysed the Sox gene complement in the pufferfish, Fugu rubripes, in order to shed further light on the diversity and origins of the Sox gene family. Major differences were found between the Sox family in Fugu and those in humans and mice. In particular, Fugu does not have orthologues of Sry, Sox,15 and Sox30, which appear to be specific to mammals, while Sox19, found in Fugu and zebrafish but absent in mammals, seems to be specific to fishes. Six mammalian Sox genes are represented by two copies each in Fugu, indicating a large-scale gene duplication in the fish lineage. These findings point to recent Sox gene loss, duplication and divergence occurring during the evolution of tetrapod and teleost lineages, and provide further evidence for large-scale segmental or a whole-genome duplication occurring early in the radiation of teleosts. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Plants accumulate isotopes of carbon at different rates because of discrimination against C-13 relative to C-12. In plants that fix carbon by the C-3 pathway, the amount of discrimination correlates negatively with transpiration efficiency (TE) where TE is the amount of dry matter accumulated per unit water transpired. Therefore, carbon isotope discrimination (Delta) has become a useful tool for selecting genotypes with improved TE and performance in dry environments. Surveys of 161 sunflower (Helianthus spp.) genotypes of diverse origin revealed a large and unprecedented range of genetic variation for Delta (19.5-23.8parts per thousand). A strong negative genetic correlation (r(g)) between TE and Delta (r(g) = -0.87, P < 0.001) was observed in glasshouse studies. Gas exchange measurements of field grown plants indicated that Delta was strongly correlated with stomatal conductance to water vapor (g), (r(g) 0.64, P < 0.01), and the ratio of net assimilation rate (A) to g, (r(g) = 0.86, P < 0.001), an instantaneous measure of TE. Genotype CMSHA89MAX1 had the lowest TE (and highest Delta) of all genotypes tested in these studies and low yields in hybrid combination. Backcrossing studies showed that the TE of this genotype was due to an adverse effect of the MAX1 cytoplasm, which was inherited from the diploid perennial H. maximiliani Schrader. Overall, these studies suggested that there is an excellent opportunity for breeders to develop sunflower germplasm with improved TE. This can be achieved, in part, by avoiding cytoplasms such as the MAX1 cytoplasm.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy (R) or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to I infected in 800 samples with pepper but never detecting more than I infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
Molecular diversity among 421 clones of cultivated sugarcane and wild relatives was analysed using AFLP markers. Of these clones, 270 were Saccharum officinarum and 151 were either cultivars produced by the Australian breeding program or important parents used in the breeding program. The S. of. cinarum clones were obtained from a collection that contained clones from all the major regions where S. of. cinarum is grown. Five AFLP primer combinations generated 657 markers ofwhich 614 were polymorphic. All clones contained a large number of markers; a result of the polyploid nature and heterozygosity of the genome. S. of. cinarum clones from New Guinea displayed greater diversity than S. of. cinarum clones from other regions. This is in agreement with the hypothesis that New Guinea is the centre of origin of this species. The S. of. cinarum clones from Hawaii and Fiji formed a separate group and may correspond to clones that have been introgressed with other members of the ` Saccharum complex'. Greater diversity was found in the cultivars than in the S. of. cinarum clones due to the introgression of S. spontaneum chromatin. These cultivars clustered as expected based on pedigree. The major contribution of clones QN66- 2008 and Nco310 to Australian sugarcane cultivars divided the cultivars into 2 main groups. Although only a fewS. of. cinarum clones are known to have been used in the breeding of current cultivars, about 90% of markers present in the S. of. cinarum clone collection ( 2n= 80) were also present in the cultivar collection. This suggests that most of the observed genetic diversity in S. of. cinarum has been captured in Australian sugarcane germplasm.
Resumo:
An international collection of the sugarcane ratoon stunting disease pathogen, Leifsonia xyli subsp. xyli, was analysed to assess genetic diversity. DNA fingerprinting using BOX primers was performed on 105 isolates, comprising 65 Australian isolates and an additional 40 isolates from Indonesia (n = 8), Japan (n = 1), USA (n = 3), Brazil (n = 2), Mali (n = 2), Zimbabwe (n = 13), South Africa (n = 9) and Reunion (n = 2). Sixty-two of these isolates were also screened using ERIC primers. No variation was found among any of the isolates. The intergenic spacer (IGS) region of the ribosomal RNA genes from 54 isolates was screened for sequence variation using single-stranded conformational polymorphism (SSCP), but none was observed. Direct sequencing of the IGS from a subset of nine isolates, representing all of the countries sampled in this study, confirmed the results of the SSCP analysis. Likewise, no sequence variation was found in the 16S ribosomal RNA genes of the same subset. Four Colombian isolates from sugarcane, morphologically similar to L. xyli subsp. xyli, were putatively shown to be an undescribed Agrococcus species of unknown pathogenicity. The lack of genetic variation among L. xyli subsp. xyli isolates, independent of time of sampling, cultivar of isolation, or country of origin, suggests the worldwide spread of a single pathogenic clone, and further suggests that sugarcane cultivars resistant to ratoon stunting disease in one area should retain this property in other regions.
Resumo:
The biphasic (pelagobenthic) life cycle is found throughout the animal kingdom, and includes gametogenesis, embryogenesis, and metamorphosis. From a tangled web of hypotheses on the origin and evolution of the metazoan pelagobenthic life cycle, current opinion appears to favor a simple, larval-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This hypothesis derives originally from Haeckel's (1874) Gastraea theory of ontogeny recapitulating phylogeny, in which the gastrula is viewed as the recapitulation of a gastracan ancestor that evolved via selection on a simple, planktonic hollow ball of cells to develop the capacity to feed. Here, we propose an equally plausible hypothesis that the origin of the metazoan pelagobenthic life cycle was a direct consequence of sexual reproduction in a likely holobenthic ancestor. In doing so, we take into account new insights from poriferan development and from molecular phylogenies. In this scenario, the gastrula does not represent a recapitulation, but simply an embryological stage that is an outcome of sexual reproduction. The embryo can itself be considered as the precursor to a biphasic lifestyle, with the embryo representing one phase and the adult another phase. This hypothesis is more parsimonious because it precludes the need for multiple, independent origins of the benthic form. It is then reasonable to consider that multilayered, ciliated embryos ultimately released into the water column are subject to natural selection for dispersal/longevity/feeding that sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. These new insights from poriferan development thus clearly support the intercalation hypothesis of bilaterian larval evolution, which we now believe should be extended to discussions of the origin of biphasy in the metazoan last common ancestor.
Resumo:
In a twin sample where duration of gestation can be controlled, a specific example of the fetal origins hypothesis concerning association between low birth weight and early age at menopause is explored. The hypothesis is based on the physiologically plausible path from intrauterine growth retardation and reduced numbers of primary follicles to an earlier menopause. The sample comprised 323 Australian female twin pairs where both co-twins had reached menopause naturally and reported on their weight at birth. Regression analysis showed no linear association between the two variables (P = 0.371, r(2) = 0.0009). Intra-pair differences in age at menopause were investigated in the context of relative birth weight of co-twins. In 265 pairs an intra-pair birth a eight difference was reported. In monozygotic (MZ) pairs (n = 168) this allowed for control of genetic effects as well as gestation duration. No significant differences dependent on birth weight relative to co-twin were found for age at natural menopause in either MZ or dizygotic (DZ) twin pairs, even in pairs whose birth weights differed markedly. There was some indication that twins with premature ovarian failure were heavier at birth than twins with normal or later menopausal age. We conclude that the hypothesis that lower birth weight is associated with earlier menopause is not supported by our data.
Resumo:
Sox8 is a member of the Sox family of developmental transcription factor genes and is closely related to Sox9, a critical gene involved in mammalian sex determination and differentiation. Both genes encode proteins with the ability to bind similar DNA target sequences, and to activate transcription in in vitro assays. Expression studies indicate that the two genes have largely overlapping patterns of activity during mammalian embryonic development. A knockout of Sox8 in mice has no obvious developmental phenotype, suggesting that the two genes are able to act redundantly in a variety of developmental contexts. In particular, both genes are expressed in the developing Sertoli cell lineage of the developing testes in mice, and both proteins are able to activate transcription of the gene encoding anti-Mullerian hormone (AMH), through synergistic action with steroidogenic factor I (SF1). We have hypothesized that Sox8 may substitute for Sox9 in species where Sox9 is expressed too late to be involved in sex determination or regulation of Amh expression. However, our studies involving the red-eared slider turtle indicate that Sox8 is expressed at similar levels in males and females throughout the sex-determining period, suggesting that Sox8 is neither a transcriptional regulator for Amh, nor responsible for sex determination or gonad differentiation in that species. Similarly, Sox8 is not expressed in a sexually dimorphic pattern during gonadogenesis in the chicken. Since a functional role(s) for Sox8 is implied by its conservation during evolution, the significance of Sox8 for sexual and other aspects of development will need to be uncovered through more directed lines of experimentation. Copyright (C) 2003 S. Karger AG, Basel.