233 resultados para genetic interactions
em University of Queensland eSpace - Australia
Resumo:
Despite the identification of SRY as the testis-determining gene in mammals, the genetic interactions controlling the earliest steps of male sex determination remain poorly understood. In particular, the molecular lesions underlying a high proportion of human XY gonadal dysgenesis, XX maleness and XX true hermaphroditism remain undiscovered. A number of screens have identified candidate genes whose expression is modulated during testis or ovary differentiation in mice, but these screens have used whole gonads, consisting of multiple cell types, or stages of gonadal development well beyond the time of sex determination. We describe here a novel reporter mouse line that expresses enhanced green fluorescent protein under the control of an Sf1 promoter fragment, marking Sertoli and granulosa cell precursors during the critical period of sex determination. These cells were purified from gonads of male and female transgenic embryos at 10.5 dpc (shortly after Sry transcription is activated) and 11.5 dpc (when Sox9 transcription begins), and their transcriptomes analysed using Affymetrix genome arrays. We identified 266 genes, including Dhh, Fgf9 and Ptgds, that were upregulated and 50 genes that were downregulated in 11.5 dpc male somatic gonad cells only, and 242 genes, including Fst, that were upregulated in 11.5 dpc female somatic gonad cells only. The majority of these genes are novel genes that lack identifiable homology, and several human orthologues were found to map to chromosomal loci implicated in disorders of sexual development. These genes represent an important resource with which to piece together the earliest steps of sex determination and gonad development, and provide new candidates for mutation searching in human sexual dysgenesis syndromes.
Resumo:
The microphthalmia transcription factor (MITF), a basic-helix-loop-helix zipper factor, regulates distinct target genes in several cell types. We hypothesized that interaction with the Ets family factor PU.1, whose expression is limited to hematopoietic cells, might be necessary for activation of target genes like tartrate-resistant acid phosphatase (TRAP) in osteoclasts. Several lines of evidence were consistent with this model. The combination of MITF and PU.1 synergistically activated the TRAP promoter in transient assays. This activation was dependent on intact binding sites for both factors in the TRAP promoter. MITF and PU.1 physically interacted when coexpressed in COS cells or in vitro when purified recombinant proteins were studied. The minimal regions of MITF and PU.1 required for the interaction were the basic-helix-loop-helix zipper domain and the Ets DNA binding domain, respectively. Significantly, mice heterozygous for both the mutant mi allele and a PU.1 null allele developed osteopetrosis early in life which resolved with age. The size and number of osteoclasts were not altered in the double heterozygous mutant mice, indicating that the defect lies in mature osteoclast function. Taken in total, the results afford an example of how lineage-specific gene regulation can be achieved by the combinatorial action of two broadly expressed transcription factors.
Resumo:
The interaction between genetic and environmental factors for PD was examined in a Chinese population. It was found that although the intron 2 MAOB (GT)(n) repeat polymorphism was not associated with PID in the population, a relationship might have been masked by the protective effect of tea drinking. In individuals who did not drink tea (<1 cup/day), the possession of short length less than or equal to 178 bp (GT), alleles conferred a borderline significant increased risk for PD (adjusted OR = 1.47; C.l. = 1.03-2. 1). As the extent of tea consumption increased, the association between the less than or equal to178 bp allele and PD disappeared. This result suggests that the MAOB gene may be associated with PD in Chinese if the putative protective effect of tea drinking is taken into account. The significance of this finding is unclear as the study may be limited because of its marginal significance and limited numbers. However, it does demonstrate the importance of considering putative positive and negative environmental risk factors in any examination of genetic risk factors for PD. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Current opinion contends that complex interactions between genetic and environmental factors play a role in the etiology of Parkinson's disease (PD). Cigarette smoking is thought to reduce risk of PD, and emerging evidence suggests that genetic factors may modulate smoking's effect. We used a case-only design, an approach not previously used to study gene-environment interactions in PD, specifically to study interactions between glutathione-S-transferase (GST) gene polymorphisms and smoking in relation to PD. Four-hundred PD cases (age at onset: 60.0 +/- 10.7 years) were genotyped for common polymorphisms in GSTM1, PI, T1 and Z1 using well-established methods. Smoking exposure data were collected in face-to-face interviews. The independence of the studied GST genotypes and smoking exposure was confirmed by studying 402 healthy, aged individuals. No differences were observed in the distributions of GSTM1, T1 or Z1 polymorphisms between ever-smoked and never-smoked PD cases using logistic regression (all P > 0.43). However, GSTP1 *C haplotypes were over-represented among PD cases who ever smoked (odds ratio for interaction (ORi) = 2.00 (95% Cl: 1.11-3.60, P = 0.03)). Analysis revealed that ORi between smoking and the GSTP1-114Val carrier status increased with increasing smoking dose (P = 0.02 for trend). These data suggest that one or more GSTP1 polymorphisms may interact with cigarette smoking to influence the risk for PD. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Finding motifs that can elucidate rules that govern peptide binding to medically important receptors is important for screening targets for drugs and vaccines. This paper focuses on elucidation of peptide binding to I-A(g7) molecule of the non-obese diabetic (NOD) mouse - an animal model for insulin-dependent diabetes mellitus (IDDM). A number of proposed motifs that describe peptide binding to I-A(g7) have been proposed. These motifs results from independent experimental studies carried out on small data sets. Testing with multiple data sets showed that each of the motifs at best describes only a subset of the solution space, and these motifs therefore lack generalization ability. This study focuses on seeking a motif with higher generalization ability so that it can predict binders in all A(g7) data sets with high accuracy. A binding score matrix representing peptide binding motif to A(g7) was derived using genetic algorithm (GA). The evolved score matrix significantly outperformed previously reported
Resumo:
Numerous studies have reported that females benefit from mating with multiple males (polyandry) by minimizing the probability of fertilization by genetically incompatible sperm. Few, however, have directly attributed variation in female reproductive success to the fertilizing capacity of sperm. In this study we report on two experiments that investigated the benefits of polyandry and the interacting effects of males and females at fertilization in the free-spawning Australian sea urchin Heliocidaris erythrogramma. In the first experiment we used a paired (split clutch) experimental design and compared fertilization rates within female egg clutches under polyandry (eggs exposed to the sperm from two males simultaneously) and monandry (eggs from the same female exposed to sperm from each of the same two males separately). Our analysis revealed a significant fertilization benefit of polyandry and strong interacting effects of males and females at fertilization. Further analysis of these data strongly suggested that the higher rates of fertilization in the polyandry treatment were due to an overrepresentation of fertilizations due to the most compatible male. To further explore the interacting effects of males and females at fertilization we performed a second factorial experiment in which four mates were crossed with two females (in all eight combinations). In addition to confirming that fertilization success is influenced by male X female interactions, this latter experiment revealed that both sexes contributed significant variance to the observed patterns of fertilization. Taken together, these findings highlight the importance of male X female interactions at fertilization and suggest that polyandry will enable females to reduce the cost of fertilization by incompatible gametes.
Resumo:
Risk factors for melanoma include environmental (particularly ultraviolet exposure) and genetic factors. In rare families, susceptibility to melanoma is determined by high penetrance mutations in the genes CDKN2A or CDK4, with more common, less penetrant genes also postulated. A further, potent risk factor for melanoma is the presence of large numbers of melanocytic nevi so that genes controlling nevus phenotype could be such melanoma susceptibility genes. A large Australian study involving twins aged 12 y of predominantly U.K. ancestry showed strong evidence for genetic influence on nevus number and density. We carried out essentially the same study in the U.K. to gain insight into gene-environment interactions for nevi. One hundred and three monozygous (MZ) and 118 dizygous (DZ) twin pairs aged 10-18 y were examined in Yorkshire and Surrey, U.K. Nevus counts were, on average, higher in boys (mean = 98.6) than girls (83.8) (p = 0.009) and higher in Australia (110.4) than in the U.K. (79.2, adjusted to age 12 y, p < 0.0001), and nevus densities were higher on sun-exposed sites (92 per m(2)) than sun-protected sites (58 per m(2)) (p < 0.0001). Correlations in sex and age adjusted nevus density were higher in MZ pairs (0.94, 95% CI 0.92-0.96) than in DZ pairs (0.61, 95%CI 0.49-0.72), were notably similar to those of the Australian study (MZ = 0.94, DZ = 0.60), and were consistent with high heritability (65% in the U.K., 68% in Australia). We conclude that emergence of nevi in adolescents is under strong genetic control, whereas environmental exposures affect the mean number of nevi.
Resumo:
The magnitude of genotype-by-management (G x M) interactions for grain yield and grain protein concentration was examined in a multi-environment trial (MET) involving a diverse set of 272 advanced breeding lines from the Queensland wheat breeding program. The MET was structured as a series of management-regimes imposed at 3 sites for 2 years. The management-regimes were generated at each site-year as separate trials in which planting time, N fertiliser application rate, cropping history, and irrigation were manipulated. irrigation was used to simulate different rainfall regimes. From the combined analysis of variance, the G x M interaction variance components were found to be the largest source of G x E interaction variation for both grain yield (0.117 +/- 0.005 t(2) ha(-2); 49% of total G x E 0.238 +/- 0.028 t(2) ha(-2)) and grain protein concentration (0.445 +/- 0.020%(2); 82% of total G x E 0.546 +/- 0.057%(2)), and in both cases this source of variation was larger than the genotypic variance component (grain yield 0.068 +/- 0.014 t(2) ha(-2) and grain protein 0.203 +/- 0.026%(2)). The genotypic correlation between the traits varied considerably with management-regime, ranging from -0.98 to -0.31, with an estimate of 0.0 for one trial. Pattern analysis identified advanced breeding lines with improved grain yield and grain protein concentration relative to the cultivars Hartog, Sunco and Meteor. It is likely that a large component of the previously documented G x E interactions for grain yield of wheat in the northern grains region are in part a result of G x M interactions. The implications of the strong influence of G x M interactions for the conduct of wheat breeding METs in the northern region are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The haploid NK model developed by Kauffman can be extended to diploid genomes and to incorporate gene-by-environment interaction effects in combination with epistasis. To provide the flexibility to include a wide range of forms of gene-by-environment interactions, a target population of environment types (TPE) is defined. The TPE consists of a set of E different environment types, each with their own frequency of occurrence. Each environment type conditions a different NK gene network structure or series of gene effects for a given network structure, providing the framework for defining gene-by-environment interactions. Thus, different NK models can be partially or completely nested within the E environment types of a TPE, giving rise to the E(NK) model for a biological system. With this model it is possible to examine how populations of genotypes evolve in context with properties of the environment that influence the contributions of genes to the fitness values of genotypes. We are using the E(NK) model to investigate how both epistasis and gene-by-environment interactions influence the genetic improvement of quantitative traits by plant breeding strategies applied to agricultural systems. © 2002 Wiley Periodicals, Inc.
Resumo:
Molecular modelling of human CYP1B1 based on homology with the mammalian P450, CYP2C5, of known three-dimensional structure is reported. The enzyme model has been used to investigate the likely mode of binding for selected CYP1B1 substrates, particularly with regard to the possible effects of allelic variants of CYP1B1 on metabolism. In general, it appears that the CYP1B1 model is consistent with known substrate selectivity for the enzyme, and the sites of metabolism can be rationalized in terms of specific contacts with key amino acid residues within the CYP1B1 heme locus. Further-more, a mode of binding interaction for the inhibitor, a-naphthoflavone, is presented which accords with currently available information. The current paper shows that a combination of molecular modelling and experimental determinations on the substrate metabolism for CYP1B1 allelic variants can aid in the understanding of structure-function relationships within P450 enzymes. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.