4 resultados para genetic benefits

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification worth is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is concern that the commercial harvest of kangaroos (Macropus spp.) is affecting species fitness and evolutionary potential because the harvest selects for larger individuals, particularly males. This paper reviews the likely effect of selective harvesting on specific traits associated with fitness, including size, and on adaptive genotypes through generalised loss of gene diversity. Heritability for traits associated with fitness is low generally. The intensity of selection imposed by harvesting is low for several reasons: the geographic size of genetic populations is much larger than the harvest localities, which are therefore not closed but open with immigration acting to correct any change in allele frequencies through harvesting; the harvest targets kangaroos above a threshold weight that includes all adult males, not the largest males specifically; larger, older males may not confer significant fitness benefits on offspring; fitness traits are inherited through both sexes while males are targeted predominantly; populations are not at a selective equilibrium because food availability fluctuates, and the fittest is unlikely to be the largest. Comparisons of harvested and unharvested populations do not show any loss of gene diversity as a result of harvesting. The likelihood of a long-term genetic impact of kangaroo harvesting as currently practiced is negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictive testing is one of the new genetic technologies which, in conjunction with developing fields such as pharmacogenomics, promises many benefits for preventive and population health. Understanding how individuals appraise and make genetic test decisions is increasingly relevant as the technology expands. Lay understandings of genetic risk and test decision-making, located within holistic life frameworks including family or kin relationships, may vary considerably from clinical representations of these phenomena. The predictive test for Huntington's disease (HD), whilst specific to a single-gene, serious, mature-onset but currently untreatable disorder, is regarded as a model in this context. This paper reports upon a qualitative Australian study which investigated predictive test decision-making by individuals at risk for HD, the contexts of their decisions and the appraisals which underpinned them. In-depth interviews were conducted in Australia with 16 individuals at 50% risk for HD, with variation across testing decisions, gender, age and selected characteristics. Findings suggested predictive testing was regarded as a significant life decision with important implications for self and others, while the right not to know genetic status was staunchly and unanimously defended. Multiple contexts of reference were identified within which test decisions were located, including intra- and inter-personal frameworks, family history and experience of HID, and temporality. Participants used two main criteria in appraising test options: perceived value of, or need for the test information, for self and/or significant others, and degree to which such information could be tolerated and managed, short and long-term, by self and/or others. Selected moral and ethical considerations involved in decision-making are examined, as well as the clinical and socio-political contexts in which predictive testing is located. The paper argues that psychosocial vulnerabilities generated by the availability of testing technologies and exacerbated by policy imperatives towards individual responsibility and self-governance should be addressed at broader societal levels. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limitations on maximum transpiration rates, which are commonly observed as midday stomatal closure, have been observed even under well-watered conditions. Such limitations may be caused by restricted hydraulic conductance in the plant or by limited supply of water to the plant from uptake by the roots. This behaviour would have the consequences of limiting photosynthetic rate, increasing transpiration efficiency, and conserving soil water. A key question is whether the conservation of water will be rewarded by sustained growth during seed fill and increased grain yield. This simulation analysis was undertaken to examine consequences on sorghum yield over several years when maximum transpiration rate was imposed in a model. Yields were simulated at four locations in the sorghum-growing area of Australia for 115 seasons at each location. Mean yield was increased slightly ( 5 - 7%) by setting maximum transpiration rate at 0.4 mm h(-1). However, the yield increase was mainly in the dry, low-yielding years in which growers may be more economically vulnerable. In years with yield less than similar to 450 g m(-2), the maximum transpiration rate trait resulted in yield increases of 9 - 13%. At higher yield levels, decreased yields were simulated. The yield responses to restricted maximum transpiration rate were associated with an increase in efficiency of water use. This arose because transpiration was reduced at times of the day when atmospheric demand was greatest. Depending on the risk attitude of growers, incorporation of a maximum transpiration rate trait in sorghum cultivars could be desirable to increase yields in dry years and improve water use efficiency and crop yield stability.