5 resultados para generalized binary group
em University of Queensland eSpace - Australia
Resumo:
Objective: Sertraline's efficacy and tolerability in treating generalized anxiety disorder were evaluated. Method: Adult outpatients with DSM-IV generalized anxiety disorder and a total score of 18 or higher on the Hamilton Anxiety Rating Scale were eligible. After a 1-week single-blind placebo lead-in, patients were randomly assigned to 12 weeks of double-blind treatment with placebo (N=188, mean baseline anxiety score=25) or flexible doses (50-150 mg/day) of sertraline (N=182, mean anxiety score=25). The primary outcome measure was baseline-to-endpoint change in the Hamilton anxiety scale total score. A secondary efficacy measure was the Clinical Global Impression (CGI) improvement score; response was defined as a score of 2 or less. Results: Sertraline patients had significantly greater improvement than placebo patients on all efficacy measures at week 4. Analysis of covariance of the intent-to-treat group at endpoint (with the last observation carried forward) showed a significant difference in the decrease from baseline of the least-square mean total score on the Hamilton anxiety scale between sertraline (mean=11.7) and placebo (mean=8.0). Significantly greater endpoint improvement with sertraline than placebo was obtained for mean scores on the Hamilton anxiety scale psychic factor (6.7 versus 4.1) and somatic factor (5.0 versus 3.9). The rate of responders, based on CGI improvement and last observation carried forward, was significantly higher for sertraline (63%) than placebo (37%). Sertraline was well tolerated; 8% of patients versus 10% for placebo dropped out because of adverse events. Conclusions: Sertraline appears to be efficacious and well tolerated in the treatment of generalized anxiety disorder.
Resumo:
The use of a fully parametric Bayesian method for analysing single patient trials based on the notion of treatment 'preference' is described. This Bayesian hierarchical modelling approach allows for full parameter uncertainty, use of prior information and the modelling of individual and patient sub-group structures. It provides updated probabilistic results for individual patients, and groups of patients with the same medical condition, as they are sequentially enrolled into individualized trials using the same medication alternatives. Two clinically interpretable criteria for determining a patient's response are detailed and illustrated using data from a previously published paper under two different prior information scenarios. Copyright (C) 2005 John Wiley & Sons, Ltd.
Resumo:
Standard factorial designs sometimes may be inadequate for experiments that aim to estimate a generalized linear model, for example, for describing a binary response in terms of several variables. A method is proposed for finding exact designs for such experiments that uses a criterion allowing for uncertainty in the link function, the linear predictor, or the model parameters, together with a design search. Designs are assessed and compared by simulation of the distribution of efficiencies relative to locally optimal designs over a space of possible models. Exact designs are investigated for two applications, and their advantages over factorial and central composite designs are demonstrated.
Resumo:
We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping 6 away from half-filling, finite-system density-matrix renormalizationgroup (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/delta and 1/delta, respectively, corresponding to ordering wavevectors 2k(F) and 4k(F) for the currents and densities, where 2k(F) = pi(1 - delta). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/delta, the DMRG results are consistent with a true long-range order scenario for the currents and densities. (c) 2005 Elsevier Inc. All rights reserved.