40 resultados para gene regulatory network
em University of Queensland eSpace - Australia
Resumo:
We describe a network module detection approach which combines a rapid and robust clustering algorithm with an objective measure of the coherence of the modules identified. The approach is applied to the network of genetic regulatory interactions surrounding the tumor suppressor gene p53. This algorithm identifies ten clusters in the p53 network, which are visually coherent and biologically plausible.
Resumo:
Bistability and switching are two important aspects of the genetic regulatory network of phage. Positive and negative feedbacks are key regulatory mechanisms in this network. By the introduction of threshold values, the developmental pathway of A phage is divided into different stages. If the protein level reaches a threshold value, positive or negative feedback will be effective and regulate the process of development. Using this regulatory mechanism, we present a quantitative model to realize bistability and switching of phage based on experimental data. This model gives descriptions of decisive mechanisms for different pathways in induction. A stochastic model is also introduced for describing statistical properties of switching in induction. A stochastic degradation rate is used to represent intrinsic noise in induction for switching the system from the lysogenic pathway to the lysis pathway. The approach in this paper represents an attempt to describe the regulatory mechanism in genetic regulatory network under the influence of intrinsic noise in the framework of continuous models. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Topological measures of large-scale complex networks are applied to a specific artificial regulatory network model created through a whole genome duplication and divergence mechanism. This class of networks share topological features with natural transcriptional regulatory networks. Specifically, these networks display scale-free and small-world topology and possess subgraph distributions similar to those of natural networks. Thus, the topologies inherent in natural networks may be in part due to their method of creation rather than being exclusively shaped by subsequent evolution under selection. The evolvability of the dynamics of these networks is also examined by evolving networks in simulation to obtain three simple types of output dynamics. The networks obtained from this process show a wide variety of topologies and numbers of genes indicating that it is relatively easy to evolve these classes of dynamics in this model. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Networks exhibiting accelerating growth have total link numbers growing faster than linearly with network size and either reach a limit or exhibit graduated transitions from nonstationary-to-stationary statistics and from random to scale-free to regular statistics as the network size grows. However, if for any reason the network cannot tolerate such gross structural changes then accelerating networks are constrained to have sizes below some critical value. This is of interest as the regulatory gene networks of single-celled prokaryotes are characterized by an accelerating quadratic growth and are size constrained to be less than about 10,000 genes encoded in DNA sequence of less than about 10 megabases. This paper presents a probabilistic accelerating network model for prokaryotic gene regulation which closely matches observed statistics by employing two classes of network nodes (regulatory and non-regulatory) and directed links whose inbound heads are exponentially distributed over all nodes and whose outbound tails are preferentially attached to regulatory nodes and described by a scale-free distribution. This model explains the observed quadratic growth in regulator number with gene number and predicts an upper prokaryote size limit closely approximating the observed value. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Mammalian cells harbor numerous small non-protein-coding RNAs, including small nucleolar RNAs (snoRNAs), microRNAs (miRNAs), short interfering RNAs (siRNAs) and small double-stranded RNAs, which regulate gene expression at many levels including chromatin architecture, RNA editing, RNA stability, translation, and quite possibly transcription and splicing. These RNAs are processed by multistep pathways from the introns and exons of longer primary transcripts, including protein-coding transcripts. Most show distinctive temporal- and tissue-specific expression patterns in different tissues, including embryonal stem cells and the brain, and some are imprinted. Small RNAs control a wide range of developmental and physiological pathways in animals, including hematopoietic differentiation, adipocyte differentiation and insulin secretion in mammals, and have been shown to be perturbed in cancer and other diseases. The extent of transcription of non-coding sequences and the abundance of small RNAs suggests the existence of an extensive regulatory network on the basis of RNA signaling which may underpin the development and much of the phenotypic variation in mammals and other complex organisms and which may have different genetic signatures from sequences encoding proteins.
Resumo:
Demosponges are considered part of the most basal evolutionary lineage in the animal kingdom. Although the sponge body plan fundamentally differs from that of other metazoans, their development includes many of the hallmarks of bilaterian and eumetazoan embryogenesis, namely fertilization followed by a period of cell division yielding distinct cell populations, which through a gastrulation-like process become allocated into different cell layers and patterned within these layers. These observations suggest that the last common ancestor (LCA) to all living animals was developmentally more sophisticated than is widely appreciated and used asymmetric cell division and morphogen gradients to establish localized populations of specified cells within the embryo. Here we demonstrate that members of a range of transcription factor gene classes, many of which appear to be metazoan-specific, are expressed during the development of the demosponge Reniera, including ANTP, Pax, POU, LIM-HD, Sox, nuclear receptor, Fox (forkhead), T-box, Mef2, and Ets genes. Phylogenetic analysis of these genes suggests that not only the origin but the diversification of some of the major developmental metazoan transcription factor classes took place before sponges diverged from the rest of the Metazoa. Their expression during demosponge development suggests that, as in today's sophisticated metazoans, these genes may have functioned in the regulatory network of the metazoan LCA to control cell specification and regionalized gene expression during embryogenesis.
Resumo:
Bistability arises within a wide range of biological systems from the A phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. in this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.
Resumo:
Alignments of homologous genomic sequences are widely used to identify functional genetic elements and study their evolution. Most studies tacitly equate homology of functional elements with sequence homology. This assumption is violated by the phenomenon of turnover, in which functionally equivalent elements reside at locations that are nonorthologous at the sequence level. Turnover has been demonstrated previously for transcription-factor-binding sites. Here, we show that transcription start sites of equivalent genes do not always reside at equivalent locations in the human and mouse genomes. We also identify two types of partial turnover, illustrating evolutionary pathways that could lead to complete turnover. These findings suggest that the signals encoding transcription start sites are highly flexible and evolvable, and have cautionary implications for the use of sequence-level conservation to detect gene regulatory elements.
Resumo:
As advances in molecular biology continue to reveal additional layers of complexity in gene regulation, computational models need to incorporate additional features to explore the implications of new theories and hypotheses. It has recently been suggested that eukaryotic organisms owe their phenotypic complexity and diversity to the exploitation of small RNAs as signalling molecules. Previous models of genetic systems are, for several reasons, inadequate to investigate this theory. In this study, we present an artificial genome model of genetic regulatory networks based upon previous work by Torsten Reil, and demonstrate how this model generates networks with biologically plausible structural and dynamic properties. We also extend the model to explore the implications of incorporating regulation by small RNA molecules in a gene network. We demonstrate how, using these signals, highly connected networks can display dynamics that are more stable than expected given their level of connectivity.