56 resultados para gene mutations
em University of Queensland eSpace - Australia
Resumo:
The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) is a high molecular weight, protein (similar to350 kDa) containing a C-terminal protein kinase domain and a number of other putative domains not yet functionally defined. The majority of ATM gene mutations in A-T patients are truncating, resulting in prematurely terminated products that are highly unstable. Missense mutations within the kinase domain and elsewhere in the molecule alter the stability of the protein and lead to loss of protein kinase activity. Only rarely are patients observed with two missense mutations and this gives rise to a milder disease phenotype. Evidence for a dominant interfering effect on normal ATM kinase activity has been reported in cell lines transfected with missense mutant ATM and in cell lines from some A-T heterozygotes. The dominant negative effect of mutant ATM is manifested by an enhancement of cellular radiosensitivity and may be responsible for the cancer predisposition observed in carriers of ATM missense mutations. In this review, we explore the domain structure of the ATM molecule, sites of interaction with other proteins and the consequences of specific amino acid changes on function. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Objective. To determine whether squamous cervical cancers exhibit mutations or deletions in MHC class I genes or transport-associated protein (TAP) genes. Methods. Polymerase chain reaction based protocols were used to examine HLA class I and TAP genes in a panel of cervical tumours, using DNA from corresponding blood samples as controls. SSP-PCR protocols were similarly used for examination of all TAP alleles in tumour and blood samples. Results. In a series of cervical carcinomas, 7 of 27 (26%) exhibited mutations in HLA-A genes, while 12 of 23 (52%) exhibited mutations in TAP genes. HLA gene mutations were detected in 2 of 14 CIN2-3 lesions, and TAP gene mutations in none of 14, a frequency significantly less than observed in the cervical carcinoma samples (P < 0.01). The TAP 2A/2B heterozygous genotype was observed with increased frequency in patients with cervical cancer compared to population controls (P < 0.02). Conclusion. These data suggest that TAP genes may be relevant to evolution of cervical cancer from precursor lesions. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Chronic fatigue syndrome (CFS) is characterized by idiopathic fatigue of greater than 6 months' duration with postexertional exacerbation and many other symptoms. A trend toward relative hypocortisolism is described in CFS. Twin and family studies indicate a substantial genetic etiologic component to CFS. Recently, severe corticosteroid-binding globulin (CBG) gene mutations have been associated with CFS in isolated kindreds. Human leukocyte elastase, an enzyme important in CBG catabolism at inflammatory sites, is reported to be elevated in CFS. We hypothesized that CBG gene polymorphisms may act as a genetic risk factor for CFS. A total of 248 patients with CFS defined by Centers for Disease Control criteria, and 248 controls were recruited. Sequencing and restriction enzyme testing of the CBG gene coding region allowed detection of severe CBG gene mutations and a common exon 3 polymorphism (c.825G --> T, Ala-Ser(224)). Plasma CBG levels were measured in 125 CFS patients and 198 controls by radioimmunoassay. Total and free (calculated and measured) cortisol levels were ascertained in single samples between 8-10 a.m. The age of onset (mid 30s) and gender ratio (2.2:1, female:male) of the patients were similar to those reported in U.S. epidemiologic studies. A trend toward a preponderance of serine(224) homozygosity among the CFS patients was noted, compared with controls (chi(2) = 5.31, P = 0.07). Immunoreactive-CBG (IR-CBG) levels were higher in Serine/Alanine (Ser/Ala) than Ala/Ala subjects and higher again in Ser/Ser subjects, this effect was strongest in controls; Ser/Ser: 46.1 +/- 1.8 (n = 31, P = 0.03) vs. Ser/Ala: 42.4 +/- 1.0 (n = 56, P = 0.05) vs. Ala/Ala: 40.8 +/- 1.7 mug/mL (n = 21). Despite higher CBG levels, there was a nonsignificant trend toward lower total and free plasma cortisol in serine allele positive patients, total cortisol: Ser/Ser: 13.3 +/- 1.4 (n = 34) vs. Ser/Ala: 14.0 +/- 0.7 (n = 66) vs. Ala/Ala: 15.4 +/- 1.0 (n = 23). Homozygosity for the serine allele of the CBG gene may predispose to CFS, perhaps due to an effect on hypothalamic-pituitary-adrenal axis function related to altered CBG-cortisol transport function or immune-cortisol interactions.
Resumo:
Immune surveillance by cytotoxic lymphocytes against cancer has been postulated for decades, but direct evidence for the role of cytotoxic lymphocytes in protecting against spontaneous malignancy has been lacking. As the rejection of many experimental cancers by cytotoxic T lymphocytes and natural killer cells is dependent on the pore-forming protein perforin (pfp), we examined pfp-deficient mice for increased cancer susceptibility. Here we show that pfp-deficient mice have a high incidence of malignancy in distinct lymphoid cell lineages (T, B, NKT), indicating a specific requirement for pfp in protection against lymphomagenesis. The susceptibility to lymphoma was accentuated by simultaneous lack of expression of the p53 gene, mutations in which also commonly predispose to human malignancies, including lymphoma. In contrast, the incidence and age of onset of sarcoma was unaffected in p53-deficient mice. Pfp-deficient mice were at least 1,000-fold more susceptible to these lymphomas when transplanted, compared with immunocompetent mice in which tumor rejection was controlled by CD8(+) T lymphocytes. This study is the first that implicates direct cytotoxicity by lymphocytes in regulating lymphomagenesis.
Resumo:
Epidemiological studies suggest that ovarian cancer is an endocrine-related tumour, and progesterone exposure specifically may decrease the risk of ovarian cancer. To assess whether the progesterone receptor (PR) exon 4 valine to leucine amino acid variant is associated with specific tumour characteristics or with overall risk of ovarian cancer, we examined 551 cases of epithelial ovarian cancer and 298 unaffected controls for the underlying G-->T nucleotide substitution polymorphism. Stratification of the ovarian cancer cases according to tumour behaviour (low malignant potential or invasive), histology, grade or stage failed to reveal any heterogeneity with respect to the genotype defined by the PR exon 4 polymorphism. Furthermore, the genotype distribution did not differ significantly between ovarian cancer cases and unaffected controls. Compared with the GG genotype, the age-adjusted odds ratio (95% confidence interval) for risk of ovarian cancer was 0.78 (0.57-1.08) for the GT genotype, and 1.39 (0.47-4.14) for the TT genotype. In conclusion, the PR exon 4 codon 660 leucine variant encoded by the T allele does not appear to be associated with ovarian tumour behaviour, histology, stage or grade. This variant is also not associated with an increased risk of ovarian cancer, and is unlikely to be associated with a large decrease in ovarian cancer risk, although we cannot rule out a moderate inverse association between the GT genotype and ovarian cancer.
Resumo:
SOX18 is a transcription factor that is transiently expressed in nascent endothelial cells during embryonic development and adult neovascularization. This protein belongs to the SOX family of transcription factors, ih,which are proving to be some of the key regulators of cell-type specification in the vertebrate embryo. Natural mutations in the Sox18 gene have been shown to result to cardiovascular dysfunction, in some cases leading to death. Available evidence thus implicates Sox18 as an important regulator of vascular development, most likely playing a key role in endothelial cell specification. However; the genetic knockout of Sox18 in mice has produced a confounding result that complicates our understanding of the molecular mode of action of the SOX18 protein. We speculate that Sox18 inky act in a redundant fashion with closely related genes such as Sox7 and/or Sox17. (C) 2001, Elsevier Science Inc.
Resumo:
Background/Aims: Concordance of iron indices between same sex siblings homozygous for the cysteine-to-tyrosine substitution at amino acid 282 (C282Y) mutation suggests that the variable phenotype in hereditary hemochromatosis is caused by genetic factors. Concordance of iron indices between same-sex heterozygous sibling pairs would provide further evidence of genetic modifiers of disease expression, and guidance for family screening strategies of subjects heterozygous for the C282Y mutation. Methods: We compared the iron indices of 35 C282Y homozygous and 35 C282Y heterozygous same-sex sibling pairs. To clarify whether concordance between siblings was due to environmental or genetic factors we compared the iron indices of 164 C282Y homozygous-normal, same-sex dizygotic twins. Results: Serum ferritin (r = 0.50, P = 0.003), hepatic iron concentration (r = 0.61, P = 0.025) and hepatic iron index (r = 0.67, P = 0.01) were highly concordant in C282Y homozygotes. Heterozygote siblings were concordant for serum ferritin (r = 0.76, P = 0.0001) and transferrin saturation (r = 0.79, P = 0.0001). Homozygote-normal same-sex dizygotic twins were concordant for serum ferritin (r = 0.62, P = 0.0001) but not for transferrin saturation. Conclusions: Concordance of iron indices exists in C282Y homozygote and heterozygote sibling pairs. Siblings of expressing C282Y heterozygotes require phenotypic assessment. These data provide evidence for modifying genes influencing disease expression in hemochromatosis. (C) 2002 European Association for the Study of the Liver. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Background and aim: E-cadherin binds to beta-catenin to form the cadherin/catenin complex required for strong cell adhesion. Inactivation of this complex in tumors facilitates invasion into surrounding tissues. Alterations of both proteins have been reported in hepatocellular carcinomas (HCC). However, the interactions between E-cadherin and beta-catenin in HCC from different geographical groups have not been explored. The aim of the present study was to assess the role of E-cadherin and beta-catenin in Australian and South African patients with HCC. Methods: DNA was extracted from malignant and non-malignant liver tissue from 37 Australian and 24 South African patients, and from histologically normal liver from 20 transplant donors. Chromosomal instability at 16q22, promoter methylation at E-cadherin, beta-catenin mutations and E-cadherin and beta-catenin protein expression was assessed using loss of heterozygosity, methylation-specific polymerase chain reaction, denaturing high-performance liquid chromatography and immunohistochemistry, respectively. Results: Loss of heterozygosity at 16q22 was prevalent in South African HCC patients (50%vs 11%; P < 0.05, chi(2)). In contrast, E-cadherin promoter hypermethylation was common in Australian cases in both malignant (30%vs 13%; P = not significant, chi(2)) and non-malignant liver (57%vs 8%, respectively, P < 0.001, chi(2)). Methylation of non-malignant liver was more likely to be detected in patients over the age of 50 years (P < 0.001, chi(2)), the overall mean age for our cohort of patients. Only one beta-catenin mutation was identified. E-cadherin protein expression was reduced in one HCC, while abnormalities in protein expression were absent in beta-catenin. Conclusion: Contrary to previous observations in HCC from other countries, neither E-cadherin nor beta-catenin appears to play a role in hepatocarcinogenesis in Australian and South African patients with HCC. (C) 2004 Blackwell Publishing Asia Pty Ltd.
Resumo:
Hereditary pancreatitis is an autosomal dominant condition characterized by recurrent episodes of acute pancreatitis, usually starting in childhood. We present a family who was ascertained when an 11-year-old girl presented with an episode of acute pancreatitis. Her father and other family members had also had recurrent bouts of acute pancreatitis. Genetic testing revealed a pathogenic mutation in the cationic trypsinogen gene in the proband, her father and her paternal grandmother. As far as we are aware, this is the first Aboriginal kindred with mutation-proven hereditary pancreatitis. Hereditary pancreatitis is an important differential diagnosis to consider in a patient with recurrent episodes of acute pancreatitis with no obvious precipitating cause. This family is of Aboriginal descent and the implications of the family's background are also discussed when considering the aetiology of the condition. We emphasize the need to ascertain a full family history from patients with a history of repeated episodes of acute pancreatitis and also emphasize the need to avoid ethnic stereotypes when assessing patients.
Resumo:
Objective Hereditary hemochromatosis is a common autosomal recessive disorder of iron metabolism. Among Northern Europeans the carrier frequency is estimated to be I in 10, while up to 1 in 200 is affected by the disease. Arthropathy is one early clinical manifestation of this disease, but the articular features are often misdiagnosed. In this study the two frequent mutations of the HLA-linked hemochromatosis gene (HFE) were investigated, in a rheumatology clinic population. Methods Two hundred and six consecutive patients (mean age 57.7 years; 38 male/168 female) attending a rheumatology clinic over a period of 14 months were screened for HFE mutations (C282Y and H63D). All standard diagnostic procedures were used to identify the aetiology: of the arthropathy. Mutations were evaluated by separation on PAGE of digested PCR amplificates of DNA (by SnapI and Bcl-I, for C282Y and H63D, respectively) obtained from PBMCs. Results The C282Y and H63D allele frequencies were 4.5 and 12.8 inpatients with rheumatic diseases. Five patients were homozygote for H63D (2.4%), and one,for C282Y (0.5%). Five patients were compound heterozygous (2.4%). The observed C282Y allele frequency in rheumatic patients with undifferentiated arthritis was 12.9 and exceeded that of healthy subjects (p = 0.01). Conclusions Determination of the HFE genotype is clinically useful in patients with arthritis of unknown origin, to allow early diagnosis of hemochromatosis.
Resumo:
Background. Hereditary hemochromatosis is an autosomal recessive disorder of iron metabolism that is characterized by excess accumulation of iron in various organs and often leads to diabetes mellitus (DM). To study whether mutations in the hemochromatosis gene (HFE) could be a risk factor for the development of gestational diabetes mellitus (GDM), the prevalence of HFE mutations in patients with GDM was compared to that of healthy pregnant controls. Methods: GDM was diagnosed in 208 of 2,421 pregnant woman screened between the 24th and 28th week of gestation over a period of 18 months. Patients and 170 matched control subjects were screened for the HFE gene mutations C282Y and H63D. Results: In North and Central European GDM patients, the allele frequency of the C282Y mutation (7.7%) was higher than in pregnant controls (2.9%; p = 0.04), while the frequency of the H63D mutation was not different (p = 0.45). Three patients with GDM were homozygous for H63D (3.1%), 1 patient was homozygous for C282Y (1.0%), 2 patients were compound heterozygous (2.0%) and 26 were heterozygous [11 C282Y (11.2%) and 15 H63D (15.3%)]. C282Y and H63D allele frequencies were not different between controls and GDIVI patients of Southern European or non-European origin. Irrespective of the HIFE-mutation status, serum ferritin levels were increased in patients with GDM compared to healthy pregnant controls (p = 0.01), while transferrin saturation was similar in both groups. Conclusions: In North and Central European patients with GDM, the C282Y allele frequency is higherthan in healthy pregnant women, suggesting a genetic susceptibility to the development of GDM. Copyright (c) 2005 S. Karger AG, Basel.
Resumo:
Sudden cardiac death in small animals is uncommon but often occurs due to cardiac conduction defects or myocardial diseases. Primary cardiac conduction defects are mainly caused by mutations in genes involved in impulse conduction processes (e.g., gapjunction genes and transcription factors) or repolarisation processes (e.g., ion-channel genes), whereas primary cardiomyopathies are mainly caused by defective force generation or force transmission due to gene mutations in either sarcomeric or cytoskeleton proteins. Although over 50 genes have been identified in humans directly or indirectly related to sudden cardiac death, no genetic aetiologies have been identified in small animals. Sudden cardiac deaths have been also reported in German Shepherds and Boxers. A better understanding of molecular genetic aetiologies for sudden cardiac death will be required for future study toward unveiling actiology in sudden cardiac death in small animals. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We have screened the hydroxymethylbilane synthase cDNAs of 3 patients from 2 families suffering from acute intermittent porphyria (AIP) from Scotland and South Africa using heteroduplex and chemical cleavage of mismatch analyses, Direct sequencing was used to characterise the mutations, The two novel mutations identified were a missense mutation at nucleotide position 64 in exon 3 (R22C) and a single base-pair deletion in exon 15, These mutations are predicted to affect the normal function of the enzyme and, therefore, are expected to be the primary cause of disease in these patients.