3 resultados para gene location

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifty-four different sugarcane resistance gene analogue (RGA) sequences were isolated, characterized, and used to identify molecular markers linked to major disease-resistance loci in sugarcane. Ten RGAs were identified from a sugarcane stem expressed sequence tag (EST) library; the remaining 44 were isolated from sugarcane stem, leaf, and root tissue using primers designed to conserved RGA motifs. The map location of 31 of the RGAs was determined in sugarcane and compared with the location of quantitative trait loci (QTL) for brown rust resistance. After 2 years of phenotyping, 3 RGAs were shown to generate markers that were significantly associated with resistance to this disease. To assist in the understanding of the complex genetic structure of sugarcane, 17 of the 31 RGAs were also mapped in sorghum. Comparative mapping between sugarcane and sorghum revealed syntenic localization of several RGA clusters. The 3 brown rust associated RGAs were shown to map to the same linkage group (LG) in sorghum with 2 mapping to one region and the third to a region previously shown to contain a major rust-resistance QTL in sorghum. These results illustrate the value of using RGAs for the identification of markers linked to disease resistance loci and the value of simultaneous mapping in sugarcane and sorghum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Plasma cholinesterase activity is known to be correlated with plasma triglycerides, HDL- and LDL-cholesterol, and other features of the metabolic syndrome. A role in triglyceride metabolism has been proposed. Genetic variants that decrease activity have been studied extensively, but the factors contributing to overall variation in the population are poorly understood. We studied plasma cholinesterase activity in a sample of 2200 adult twins to assess covariation with cardiovascular risk factors and components of the metabolic syndrome, to determine the degree of genetic effects on enzyme activity, and to search for quantitative trait loci affecting activity. Methods and Results: Cholinesterase activity was lower in women than in men before the age of 50, but increased to activity values similar to those in males after that age. There were highly significant correlations with variables associated with the metabolic syndrome: plasma triglyceride, HDL- and LDL-cholesterol, apolipoprotein B and E, urate, and insulin concentrations; gamma-glutamyltransferase and aspartate and alanine aminotransferase activities; body mass index; and blood pressure. The heritability of plasma cholinesterase activity was 65%. Linkage analysis with data from the dizygotic twin pairs showed suggestive linkage on chromosome 3 at the location of the cholinesterase WHO gene and also on chromosome 5. Conclusions: Our results confirm and extend the connection between cholinesterase, cardiovascular risk factors, and metabolic syndrome. They establish a substantial heritability for plasma cholinesterase activity that might be attributable to variation near the structural gene and at an independent locus. (c) 2006 American Association for Clinical Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As resistance genes have been shown to contain conserved motifs and cluster in many plant genomes, the identification of resistance gene analogues can be used as a strategy for both the discovery of DNA markers linked to disease resistance loci and the map-based cloning of disease resistance genes. Sugarcane suffers from many important diseases and an analysis of resistance gene analogues offers a means to identify DNA markers linked to resistance loci. However, sugarcane has the most complex genome of any crop plant and initially it is important to understand the extent of resistance gene analogue diversity in the sugarcane genome before genetic analysis. We review herein how more than 100 expressed sequence tags with homology to different resistance genes have been identified in sugarcane with many mapped as single-dose restriction fragment length polymorphism markers. Importantly, some of these resistance gene analogues have been shown to be linked to disease resistance genes or disease quantitative trait loci. In an attempt to more efficiently analyse additional resistance gene analogues in sugarcane, we report on experiments aimed at investigating the molecular diversity of several resistance gene analogue families using a modified form of a technique termed Ecotilling. Using Ecotilling, we were able to rapidly detect single nucleotide polymorphisms in fragments amplified by PCR from four different resistance gene analogue families, SoRP1D, SoPTO, SoXa21 and SoHs1pro-1. An analysis of a diverse set of sugarcane varieties, including modern sugarcane cultivars and several S. officinarum and S. spontaneum clones, indicated that all amplicons, apart from SoHs1pro-1, contained significant polymorphism within the gene region studied. However, a comparison among these sugarcane clones, including between the parents of two sugarcane mapping populations, indicated that most polymorphisms were multi-dose, not single-dose, preventing their genetic map location or association with disease susceptibility or resistance from being determined.