11 resultados para gene expression profiling
em University of Queensland eSpace - Australia
Resumo:
Merkel cell carcinoma (MCC) is a rare aggressive skin tumor which shares histopathological and genetic features with small-cell lung carcinoma (SCLC), both are of neuroendocrine origin. Comparable to SCLC, MCC cell lines are classified into two different biochemical subgroups designated as 'Classic' and 'Variant'. With the aim to identify typical gene-expression signatures associated with these phenotypically different MCC cell lines subgroups and to search for differentially expressed genes between MCC and SCLC, we used cDNA arrays to pro. le 10 MCC cell lines and four SCLC cell lines. Using significance analysis of microarrays, we defined a set of 76 differentially expressed genes that allowed unequivocal identification of Classic and Variant MCC subgroups. We assume that the differential expression levels of some of these genes reflect, analogous to SCLC, the different biological and clinical properties of Classic and Variant MCC phenotypes. Therefore, they may serve as useful prognostic markers and potential targets for the development of new therapeutic interventions specific for each subgroup. Moreover, our analysis identified 17 powerful classifier genes capable of discriminating MCC from SCLC. Real-time quantitative RT-PCR analysis of these genes on 26 additional MCC and SCLC samples confirmed their diagnostic classification potential, opening opportunities for new investigations into these aggressive cancers.
Resumo:
The mapping and sequencing of the human genome has generated a large resource for answering questions about human disease. This achievement is akin in scientific importance to developing the periodic table of elements. Plastic surgery has always been at the frontier medical research. This resource will help us to improve our understanding on the many unknown physiological and pathogical conditions we deal with daily, such as wound heating keloid scar formation, Dupuytren's disease, rheumatoid arthritis, vascular malformation and carcinogenesis. We are primed in obtaining both disease and normal tissues to use this resource and applying it to clinical use. This review is about the human genome, the basis of gene expression profiling and how it will affect our clinical and research practices in the future and for those embarking on the use of this new technology as a research tool, we provide a brief insight on its limitations and pitfalls. (C) 2006 The British Association of Plastic Surgeons. Published by Elsevier Ltd. All rights reserved.
Resumo:
The most common human cancers are malignant neoplasms of the skin(1,2). Incidence of cutaneous melanoma is rising especially steeply, with minimal progress in non-surgical treatment of advanced disease(3,4). Despite significant effort to identify independent predictors of melanoma outcome, no accepted histopathological, molecular or immunohistochemical marker defines subsets of this neoplasm(2,3). Accordingly, though melanoma is thought to present with different 'taxonomic' forms, these are considered part of a continuous spectrum rather than discrete entities(2). Here we report the discovery of a subset of melanomas identified by mathematical analysis of gene expression in a series of samples. Remarkably, many genes underlying the classification of this subset are differentially regulated in invasive melanomas that form primitive tubular networks in vitro, a feature of some highly aggressive metastatic melanomas(5). Global transcript analysis can identify unrecognized subtypes of cutaneous melanoma and predict experimentally verifiable phenotypic characteristics that may be of importance to disease progression.
Gene expression during early ascidian metamorphosis requires signaling by Hemps, an EGF-like protein
Resumo:
Hemps, a novel epidermal growth factor (EGF)-like protein, is expressed during larval development and early metamorphosis in the ascidian Herdmania curvata and plays a direct role in triggering metamorphosis. In order to identify downstream genes in the Hemps pathway we used a gene expression profiling approach, in which we compared post-larvae undergoing normal metamorphosis with larval metamorphosis blocked with an anti-Hemps antibody. Molecular profiling revealed that there are dynamic changes in gene expression within the first 30 minutes of normal metamorphosis with a significant portion of the genome (approximately 49%) being activated or repressed. A more detailed analysis of the expression of 15 of these differentially expressed genes through embryogenesis, larval development and metamorphosis revealed that while there is a diversity of temporal expression patterns, a number of genes are transiently expressed during larval development and metamorphosis. These and other differentially expressed genes were localised to a range of specific cell and tissue types in Herdmania larvae and post-larvae. The expression of approximately 24% of the genes that were differentially expressed during early metamorphosis was affected in larvae treated with the anti-Hemps antibody. Knockdown of Hemps activity affected the expression of a range of genes within 30 minutes of induction, suggesting that the Hemps pathway directly regulates early response genes at metamorphosis. In most cases, it appears that the Hemps pathway contributes to the modulation of gene expression, rather than initial gene activation or repression. A total of 151 genes that displayed the greatest alterations in expression in response to anti-Hemps antibody were sequenced. These genes were implicated in a range of developmental and physiological roles, including innate immunity, signal transduction and in the regulation of gene transcription. These results suggest that there is significant gene activity during the very early stages of H. curvata metamorphosis and that the Hemps pathway plays a key role in regulating the expression of many of these genes.
Resumo:
Chronic alcohol exposure induces lasting behavioral changes, tolerance, and dependence. This results, at least partially, from neural adaptations at a cellular level. Previous genome-wide gene expression studies using pooled human brain samples showed that alcohol abuse causes widespread changes in the pattern of gene expression in the frontal and motor cortices of human brain. Because these studies used pooled samples, they could not determine variability between different individuals. In the present study, we profiled gene expression levels of 14 postmortem human brains (seven controls and seven alcoholic cases) using cDNA microarrays (46 448 clones per array). Both frontal cortex and motor cortex brain regions were studied. The list of genes differentially expressed confirms and extends previous studies of alcohol responsive genes. Genes identified as differentially expressed in two brain regions fell generally into similar functional groups, including metabolism, immune response, cell survival, cell communication, signal transduction and energy production. Importantly, hierarchical clustering of differentially expressed genes accurately distinguished between control and alcoholic cases, particularly in the frontal cortex.
Resumo:
The number of known mRNA transcripts in the mouse has been greatly expanded by the RIKEN Mouse Gene Encyclopedia project. Validation of their reproducible expression in a tissue is an important contribution to the study of functional genomics. In this report, we determine the expression profile of 57,931 clones on 20 mouse tissues using cDNA microarrays. Of these 57,931 clones, 22,928 clones correspond to the FANTOM2 clone set. The set represents 20,234 transcriptional units (TUs) out of 33,409 TUs in the FANTOM2 set. We identified 7206 separate clones that satisfied stringent criteria for tissue-specific expression. Gene Ontology terms were assigned for these 7206 clones, and the proportion of 'molecular function' ontology for each tissue-specific clone was examined. These data will provide insights into the function of each tissue. Tissue-specific gene expression profiles obtained using our cDNA microarrays were also compared with the data extracted from the GNF Expression Atlas based on Affymetrix microarrays. One major outcome of the RIKEN transcriptome analysis is the identification of numerous nonprotein-coding mRNAs. The expression profile was also used to obtain evidence of expression for putative noncoding RNAs. In addition, 1926 clones (70%) of 2768 clones that were categorized as unknown EST, and 1969 (58%) clones of 3388 clones that were categorized as unclassifiable were also shown to be reproducibly expressed.
Resumo:
We have used microarray gene expression pro. ling and machine learning to predict the presence of BRAF mutations in a panel of 61 melanoma cell lines. The BRAF gene was found to be mutated in 42 samples (69%) and intragenic mutations of the NRAS gene were detected in seven samples (11%). No cell line carried mutations of both genes. Using support vector machines, we have built a classifier that differentiates between melanoma cell lines based on BRAF mutation status. As few as 83 genes are able to discriminate between BRAF mutant and BRAF wild-type samples with clear separation observed using hierarchical clustering. Multidimensional scaling was used to visualize the relationship between a BRAF mutation signature and that of a generalized mitogen-activated protein kinase ( MAPK) activation ( either BRAF or NRAS mutation) in the context of the discriminating gene list. We observed that samples carrying NRAS mutations lie somewhere between those with or without BRAF mutations. These observations suggest that there are gene-specific mutation signals in addition to a common MAPK activation that result from the pleiotropic effects of either BRAF or NRAS on other signaling pathways, leading to measurably different transcriptional changes.
Resumo:
This article represents the proceedings of a symposium at the 2004 International Society for Biomedical Research on Alcoholism in Mannheim, Germany, organized and co-chaired by Susan E. Bergeson and Wolfgang Sommer. The presentations and presenter were (1) Gene Expression in Brains of AlcoholPreferring and Non-Preferring Rats, by Howard J. Edenberg (2) Candidate Treatment Targets for Alcoholism: Leads from Functional Genomics Approaches, by Wolfgang Sommer (3) Microarray Analysis of Acute and Chronic Alcohol Response in Brain, by Susan E. Bergeson (4) On the Integration of QTL and Gene Expression Analysis, by Robert J. Hitzemann (5) Microarray and Proteomic Analysis of the Human Alcoholic Brain, by Peter R. Dodd.
Resumo:
The majority of epithelial ovarian carcinomas are of serous subtype, with most women presenting at an advanced stage. Approximately 70% respond to initial chemotherapy but eventually relapse. We aimed to find markers of treatment response that might be suitable for routine use, using the gene expression profile of tumor tissue. Thirty one women with histologically-confirmed late-stage serous ovarian cancer were classified into 3 groups based on response to treatment (nonresponders, responders with relapse less than 12 months and responders with no relapse within 12 months). Gene expression profiles of these specimens were analyzed with respect to treatment response and survival (minimum 36 months follow-up). Patients' clinical features did not correlate with prognosis, or with specific gene expression patterns of their tumors. However women who did not respond to treatment could be distinguished from those who responded with no relapse within 12 months based on 34 gene transcripts (p < 0.02). Poor prognosis was associated with high expression of inhibitor of differentiation-2 (ID2) (p = 0.001). High expression of decorin (DCN) and ID2 together was strongly associated with reduced survival (p = 0.003), with an estimated 7-fold increased risk of dying (95% CI 1.9-29.6; 14 months survival) compared with low expression (44 months). Immunohistochemical analysis revealed both nuclear and cytoplasmic distribution of ID2 in ovarian tumors. High percentage of nuclear staining vas associated with poor survival, although not statistically significantly. In conclusion, elevated expression of ID2 and DCN was significantly associated with poor prognosis in a homogeneous group of ovarian cancer patients for whom survival could not be predicted from clinical factors. (c) 2006 Wiley-Liss, Inc.
Resumo:
Despite the identification of SRY as the testis-determining gene in mammals, the genetic interactions controlling the earliest steps of male sex determination remain poorly understood. In particular, the molecular lesions underlying a high proportion of human XY gonadal dysgenesis, XX maleness and XX true hermaphroditism remain undiscovered. A number of screens have identified candidate genes whose expression is modulated during testis or ovary differentiation in mice, but these screens have used whole gonads, consisting of multiple cell types, or stages of gonadal development well beyond the time of sex determination. We describe here a novel reporter mouse line that expresses enhanced green fluorescent protein under the control of an Sf1 promoter fragment, marking Sertoli and granulosa cell precursors during the critical period of sex determination. These cells were purified from gonads of male and female transgenic embryos at 10.5 dpc (shortly after Sry transcription is activated) and 11.5 dpc (when Sox9 transcription begins), and their transcriptomes analysed using Affymetrix genome arrays. We identified 266 genes, including Dhh, Fgf9 and Ptgds, that were upregulated and 50 genes that were downregulated in 11.5 dpc male somatic gonad cells only, and 242 genes, including Fst, that were upregulated in 11.5 dpc female somatic gonad cells only. The majority of these genes are novel genes that lack identifiable homology, and several human orthologues were found to map to chromosomal loci implicated in disorders of sexual development. These genes represent an important resource with which to piece together the earliest steps of sex determination and gonad development, and provide new candidates for mutation searching in human sexual dysgenesis syndromes.