22 resultados para gene disruption cyanobacterial mutant
em University of Queensland eSpace - Australia
Resumo:
Bloom syndrome and ataxia-telangiectasia are autosomal recessive human disorders characterized by immunodeficiency, genome instability and predisposition to develop cancer. Recent data reveal that the products of these two genes, BLM and ATM, interact and function together in recognizing abnormal DNA structures. To investigate the function of these two molecules in DNA damage recognition, we generated double knockouts of ATM(-/-) BLM-/- in the DT40 chicken B-lymphocyte cell line. The double mutant cells were viable and exhibited a variety of characteristics of both ATM(-/-) and BLM-/- cells. There was no evidence for exacerbation of either phenotype; however, the more extreme radiosensitivity seen in ATM(-/-) and the elevated sister chromatid exchange seen in BLM-/- cells were retained in the double mutants. These results suggest that ATM and BLM have largely distinct roles in recognizing different forms of damage in DNA, but are also compatible with partially overlapping functions in recognizing breaks in radiation-damaged DNA.
Resumo:
Epipolythiodioxopiperazine toxins are secreted by a range of fungi, including Leptosphaeria maculans, which produces sirodesmin, and Aspergillus fumigatus, which produces gliotoxin. The L. maculans biosynthetic gene cluster for sirodesmin includes an ABC transporter gene, sirA. Disruption of this gene led to increased secretion of sirodesmin into the medium and an altered ratio of sirodesmin to its immediate precursor. The transcription pattern of a peptide synthetase that catalyses an early step in sirodesmin biosynthesis was elevated in the sirA mutant by 47% over a 7-day period. This was consistent with the finding that the transporter mutant had elevated sirodesmin levels. Despite increased production of sirodesmin, the sit-A mutant was more sensitive to both sirodesmin and gliotoxin. The putative gliotoxin transporter gene, gliA, (a major facilitator superfamily transporter) from A.fumigatus complemented the tolerance of the L. maculans sirA mutant to gliotoxin, but not to sirodesmin. The results indicate that SirA contributes to self-protection against sirodesmin in L. maculans and suggest a transporter other than SirA is primarily responsible for efflux of endogenously produced sirodesmin. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
BRCA1 is a tumor suppressor that functions in controlling cell growth and maintaining genomic stability. BRCA1 has also been implicated in telomere maintenance through its ability to regulate the transcription of hTERT, the catalytic subunit of telomerase, resulting in telomere shortening, and to colocalize with the telomere-binding protein TRF1. The high incidence of nonreciprocal translocations in tumors arising from BRCA1 mutation carriers and Brca1-null mice also raises the possibility that BRCA1 plays a role in telomere protection. To date, however, the consequences for telomere status of disrupting BRCA1 have not been reported. To examine the role of BRCA1 in telomere regulation, we have expressed a dominant-negative mutant of BRCA1 (trBRCA1), known to disrupt multiple functions of BRCA1, in telomerase-positive mammary epithelial cells (SVCT) and telomerase-negative ALT cells (GM847). In SVCT cells, expression of trBRCA1 resulted in an increased incidence of anaphase bridges and in an increase in telomere length, but no change in telomerase activity. In GM847 cells, trBRCA1 also increased anaphase bridge formation but did not induce any change in telomere length. BRCA1 colocalized with TRF2 in telomerase-positive cells and with a small subset of ALT-associated PML bodies (APBs) in ALT cells. Together, these results raise the possibility that BRCA1 could play a role in telomere protection and suggest a potential mechanism for one of the phenotypes of BRCA1 deficient cells. (c) 2005 Wiley-Liss, Inc.
Resumo:
We have constructed cDNA microarrays for soybean (Glycine max L. Merrill), containing approximately 4,100 Unigene ESTs derived from axenic roots, to evaluate their application and utility for functional genomics of organ differentiation in legumes. We assessed microarray technology by conducting studies to evaluate the accuracy of microarray data and have found them to be both reliable and reproducible in repeat hybridisations. Several ESTs showed high levels (>50 fold) of differential expression in either root or shoot tissue of soybean. A small number of physiologically interesting, and differentially expressed sequences found by microarray analysis were verified by both quantitative real-time RT-PCR and Northern blot analysis. There was a linear correlation (r(2) = 0.99, over 5 orders of magnitude) between microarray and quantitative real-time RT-PCR data. Microarray analysis of soybean has enormous potential not only for the discovery of new genes involved in tissue differentiation and function, but also to study the expression of previously characterised genes, gene networks and gene interactions in wild-type, mutant or transgenic; plants.
Resumo:
To increase transient expression of recombinant proteins in Chinese hamster ovary cells, we have engineered their protein synthetic capacity by directed manipulation of mRNA translation initiation. To control this process we constructed a nonphosphorylatable Ser51Ala site-directed mutant of eIF2, a subunit of the trimeric eIF2 complex that is implicated in regulation of the global rate of mRNA translation initiation in eukaryotic cells. Phosphorylation of eIF2 by protein kinases inhibits eIF2 activity and is known to increase as cells perceive a range of stress conditions. Using single-and dual-gene plasmids introduced into CHO cells by electroporation, we found that transient expression of the eIF2 Ser51Ala mutant with firefly luciferase resulted in a 3-fold increase in reporter activity, relative to cells transfected with reporter only. This effect was maintained in transfected cells for at least 48 h after transfection. Expression of the wild-type eIF2 protein had no such effect. Elevated luciferase activity was associated with a reduction in the level of eIF2 phosphorylation in cells transfected with the mutant eIF2 construct. Transfection of CHO cells with the luciferase-only construct resulted in a marked decrease in the global rate of protein synthesis in the whole cell population 6 h post-transfection. However, expression of the mutant Ser51Ala or wild-type eIF2 proteins restored the rate of protein synthesis in transfected cells to a level equivalent to or exceeding that of control cells. Associated with this, entry of plasmid DNA into cells during electroporation was visualized by confocal microscopy using a rhodamine-labeled plasmid construct expressing green fluorescent protein. Six hours after transfection, plasmid DNA was present in all cells, albeit to a variable extent. These data suggest that entry of naked DNA into the cell itself functions to inhibit protein synthesis by signaling mechanisms affecting control of mRNA translation by eIF2. This work therefore forms the basis of a rational strategy to generically up-regulate transient expression of recombinant proteins by simultaneous host cell engineering.
Resumo:
Little is known about the correlation between the loss of p16 expression and tumor progression in familial melanoma; no systematic study has been conducted on p16 expression in melanocytic tumors from patients carrying germline CDKN2A mutations. We analyzed 98 early primary lesions from familial patients, previously tested for germline CDKN2A status, by quantitative immunohistochemistry using 3 p16 antibodies. We found that p16 expression was inversely correlated with tumor progression and was significantly lower in melanomas,. including in situ lesions, than in nevi. Of other features analyzed, tumor thickness showed the most significant correlation with p16 levels. Lesions from mutation-negative patients displayed combined nuclear and cytoplasmic staining. However, some mutation-positive lesions (ie, G101W, 113insR, M53I, R24P, and 33ins24), including benign nevi, showed nuclear mislocalization, confirming previous studies suggesting that subcellular distribution indicates functional impairment of p16. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The Epstein - Barr nuclear antigens (EBNA), EBNA-3, -4 and - 6, have previously been shown to act as transcriptional regulators, however, this study identifies another function for these proteins, disruption of the G2/M checkpoint. Lymphoblastoid cell lines (LCLs) treated with a G2/M initiating drug azelaic bishydroxamine ( ABHA) did not show a G2/M checkpoint response, but rather they display an increase in cell death, a characteristic of sensitivity to the cytotoxic effects of the drug. Cell cycle analysis demonstrated that the individual expression of EBNA-3, - 4 or - 6 are capable of disrupting the G2/M checkpoint response induced by ABHA resulting in increased toxicity, whereas EBNA-2, and - 5 were not. EBNA-3 gene family protein expression also disrupted the G2/M checkpoint initiated in response to the genotoxin etoposide and the S phase inhibitor hydroxyurea. The G2 arrest in response to these drugs were sensitive to caffeine, suggesting that ATM/ATR signalling in these checkpoint responses may be blocked by the EBNA-3 family proteins. The function of EBNA-3, - 4 and - 6 proteins appears to be more complex than anticipated and these data suggest a role for these proteins in disrupting the host cell cycle machinery.
Resumo:
The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) is a high molecular weight, protein (similar to350 kDa) containing a C-terminal protein kinase domain and a number of other putative domains not yet functionally defined. The majority of ATM gene mutations in A-T patients are truncating, resulting in prematurely terminated products that are highly unstable. Missense mutations within the kinase domain and elsewhere in the molecule alter the stability of the protein and lead to loss of protein kinase activity. Only rarely are patients observed with two missense mutations and this gives rise to a milder disease phenotype. Evidence for a dominant interfering effect on normal ATM kinase activity has been reported in cell lines transfected with missense mutant ATM and in cell lines from some A-T heterozygotes. The dominant negative effect of mutant ATM is manifested by an enhancement of cellular radiosensitivity and may be responsible for the cancer predisposition observed in carriers of ATM missense mutations. In this review, we explore the domain structure of the ATM molecule, sites of interaction with other proteins and the consequences of specific amino acid changes on function. (C) 2003 Elsevier B.V. All rights reserved.
Etr1-1 gene expression alters regeneration patterns in transgenic lettuce stimulating root formation
Resumo:
We have evaluated the transformation efficiency of two lettuce ( Lactuca sativa L.) cultivars, LE126 and Seagreen, using Agrobacterium tumefaciens- mediated gene transfer. Six- day- old cotyledons were co- cultivated with Agrobacterium cultures carrying binary vectors with two different genetic constructs. The first construct contained the beta- glucuronidase gene ( GUS) under the control of the cauliflower mosaic virus 35S promoter ( CaMV 35S), while the second construct contained the ethylene mutant receptor etr1- 1, which confers ethylene insensitivity, under the control of a leaf senescence- specific promoter ( sag12). Tissues co- cultivated with the GUS construct showed strong regeneration potential with over 90% of explants developing callus masses and 85% of the calli developing shoots. Histochemical GUS assays showed that 85.7% of the plants recovered were transgenic. Very different results were observed when cotyledon explants were co- cultivated with Agrobacteria carrying the etr1- 1 gene. There was a dramatic effect on the regeneration properties of the cultured explants with root formation taking place directly from the cotyledon tissue in 34% of the explants and no callus or shoots observed initially. Eventually callus formed in 10% of cotyledons and some organogenic shoots were obtained ( 2.86%). These results indicate that the ethylene insensitivity conferred by the etr1- 1 gene alters the normal pattern of regeneration in lettuce cotyledons, inhibiting the formation of shoots and stimulating root formation during regeneration.
Resumo:
The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.
Resumo:
HMG box containing protein 1 (HBP1) is a high mobility group domain transcriptional repressor that regulates proliferation in differentiated tissues. We have found mouse Hbp1 to be expressed strongly in the embryonic mouse testis from approximately 12.5 days post coitum, compared with low levels of expression in the embryonic ovary. Expression of Hbp1 is maintained in the developing testis beyond the onset of spermatogenesis after birth. Whole-mount in situ hybridisation analysis showed that expression of Hbp1 in the XY gonad is localized within the developing testis cords, the precursors of the seminiferous tubules. Expression of Hbp1 is not apparent in testis cords of gonads from homozygous We mutant embryos, which lack germ cells. In situ hybridisation analysis on cryosectioned embryonic testis indicated that Hbp1 expression resembles that of the germ cell marker Oct4. We conclude that Hbp1 is up-regulated specifically in germ cells of the developing XY gonad. The expression of Hbp1 in XY germ cells appears to correlate with the onset of mitotic arrest in these cells. (C) 2004 Wiley-Liss, Inc.
Resumo:
Germline mutations of APC in patients with Turcot syndrome (colon cancer and medulloblastoma), was well as somatic mutations of APC, beta-catenin, and Axin in sporadic medulloblastomas (MBs) have shown the importance of WNT signaling in the pathogenesis of MB. A subset of children with MB have germline mutations of SUFU, a known inhibitor of Hedgehog signal transduction. A recent report suggested that murine Sufu can bind beta-catenin, export it from the nucleus, and thereby repress beta-catenin/T-cell factor (Tcf)-mediated transcription. We show that an MB-derived mutant of SUFU has lost the ability to decrease nuclear levels of beta-catenin, and cannot inhibit beta-catenin/Tcf-mediated transcription as compared to wild type SUFU. Our results suggest that loss of function of SUFU results in overactivity of both the Sonic Hedgehog, and the WNT signaling pathways, leading to excessive proliferation and failure to differentiate resulting in MB.
Resumo:
A mini-Tn10:lacZ: kan was inserted into a wild-type strain of Acetobacter xylinus by random transposon mutagenesis, generating a lactose-utilising and cellulose-producing mutant strain designated ITz3. Antibiotic selection plate assays and Southern hybridisation revealed that the lacZ gene was inserted once into the chromosome of strain ITz3 and was stably maintained in non-selective medium after more than 60 generations. The modified strain had, on the average, a 28-fold increase in cellulose production and a 160-fold increase in beta-galactosidase activity when grown in lactose medium. beta-Galactosidase activity is present in either lactose or sucrose medium indicating that the gene is constitutively expressed. Cellulose and beta-galactosidase production by the modified strain was also evaluated in pure and enriched whey substrates. Utilisation of lactose in whey substrate by ITz3 reached 17 g l(-1) after 4 days incubation. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Kennedy's disease (spinobulbar muscular atrophy) is an X-linked form of motor neuron disease affecting adult males carrying a CAG trinucleotide repeat expansion within the androgen receptor gene. While expression of Kennedy's disease is thought to be confined to males carrying the causative mutation, subclinical manifestations have been reported in a few female carriers of the disease. The reasons that females are protected from the disease are not clear, especially given that all other diseases caused by CAG expansions display dominant expression. In the current study, we report the identification of a heterozygote female carrying the Kennedy's disease mutation who was clinically diagnosed with motor neuron disease. We describe analysis of CAG repeat number in this individual as well as 33 relatives within the pedigree, including two male carriers of the Kennedy's mutation. The female heterozygote carried one expanded allele of the androgen receptor gene with CAG repeats numbering in the Kennedy's disease range (44 CAGs), with the normal allele numbering in the upper-normal range (28 CAGs). The subject has two sons, one of whom carries the mutant allele of the gene and has been clinically diagnosed with Kennedy's disease, whilst the other son carries the second allele of the gene with CAGs numbering in the upper normal range and displays a normal phenotype. This coexistence of motor neuron disease and the presence of one expanded allele and one allele at the upper limit of the normal range may be a coincidence. However, we hypothesize that the expression of the Kennedy's disease mutation combined with a second allele with a large but normal CAG repeat sequence may have contributed to the motor neuron degeneration displayed in the heterozygote female and discuss the possible reasons for phenotypic expression in particular individuals.