9 resultados para gelation
em University of Queensland eSpace - Australia
Resumo:
The gelation profile of yoghurts from conventionally treated (85 degrees C/30 min) and UHT treated (143 degrees C/6s) milks at 16, 18, and 20% total solids was analyzed during fermentation for 4 hrs using the invasive Rapid Visco Analyzer (RVA) and the non-invasive ultrasonic spectroscope. The viscosity measured by the RVA and the ultrasonic velocity measured by the ultrasonic spectroscope exhibited similar sigmoid trends with respect to fermentation time. The ultrasonic spectroscope detected the onset of gelation of yoghurt milk earlier (by an average of 52 min) than did the RVA, indicating a higher sensitivity of ultrasonic spectroscopy. The delay of gelation time of UHT-treated yoghurt milk as compared to conventionally treated yoghurt milk was detected by both techniques. A non-significant ( P > 0.05) effect of solids content in the yoghurt milks on their gelation time was also observed by both instruments.
Resumo:
The mechanism of pectin gelation depends on the degree of methoxylation. High methoxyl pectin gels due to hydrophobic interactions and hydrogen bonding between pectin molecules. Low methoxyl pectin forms gels in the presence of di- and polyvalent cations which cross link and neutralise the negative charges of the pectin molecule. Monovalent cations normally do not lead to gel formation with high methoxyl pectin solutions free of divalent cations, especially Ca. The present study found that alkali (NaOH or KOH) added to high methoxyl pectin leads to gel formation in a concentration-depended manner. It was also found that monovalent cations (Na and K) induce gelation of low methoxyl pectin and the time required for gel formation (setting time) depends on the cation concentration. The results indicate that a combined char-e neutralisation and ionic strength effect is responsible for the monovalent cation-induced gelation of pectin. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The influence of an organically modified clay on the curing behavior of three epoxy systems widely used in the aerospace industry and of different structures and functionalities, was studied. Diglycidyl ether of bisphenol A (DGEBA), triglycidyl p-amino phenol (TGAP) and tetraglycidyl diamino diphenylmethane (TGDDM) were mixed with an octadecyl ammonium ion modified organoclay and cured with diethyltoluene diamine (DETDA). The techniques of dynamic mechanical thermal analysis (DMTA), chemorheology and differential scanning calorimetry (DSC) were applied to investigate gelation and vitrification behavior, as well as catalytic effects of the clay on resin cure. While the formation of layered silicate nanocomposite based on the bifunctional DGEBA resin has been previously investigated to some extent, this paper represents the first detailed study of the cure behavior of different high performance, epoxy nanocomposite systems.
Resumo:
The textures of yogurt made from ultra-high temperature (UHT) treated and conventionally treated milks at high total solids were investigated. The yogurt premixes, fortified with low-heat skim milk powder to 16%, 18%, and 20% total solids, were UHT processed at 143 degreesC for 6 s and heated at 85 degreesC for 30 min using the conventional method. The onset of gelation was delayed in the UHT-processed milk compared with conventionally heated milk. During fermentation, the viscosity of yogurt made, from UHT-treated milk at 20% total solids was close to that of yogurt made from conventionally treated milk with 16% total solids. However, after storage for greater than or equal to1 d, the yogurt made from UHT-treated milk had lower viscosity and gel strength than the yogurt made from conventionally treated milk. The solids level had no influence on yogurt culture growth.
Resumo:
The effect of high power ultrasound waves on physical, biochemical, and microbial properties of meat have been the subject of a great deal of interest in recent years. The present review details the basic principles underlying the effects of ultrasound on the properties of food systems, followed by discussion of specific effects of high power ultrasound on meat products, including muscle, cellular, and subcellular components. In addition, the specific effects of high power ultrasound on the following parameters are discussed: enzyme activities and efficiencies, muscle proteolysis, quality criteria such as tenderness; extraction of protein, gelation, and restructuring of meat products and germicidal properties against meat micro-organisms.
Resumo:
A total of 188 carbohydrate polymer-producing bacterial strains were isolated from recycled sludge of five seafood processing plants. Among three selected isolates, identified as Enterobacter cloacae WD7, Enterobacter agglomerans WD50 and Pseudomonas alcaligenes WD22. E. cloacae WD7 generated a viscous culture broth exhibiting the highest flocculating activity and a crude polymer yield of 2.27 g/L after 3 days cultivation. Partial purification of this polymer was performed by precipitation with 95% ethanol, dialysis and freeze-drying. It was characterized as an acidic heteropolysaccharide, composed of neutral sugars (29.4%), uronic acids (14.2%) and amino sugars (0.93%). The functional group analysis by FT-IR spectroscopy showed the presence of hydroxyl, carboxyl, carbonyl and methoxyl groups. Thermal analysis by DSC showed the crystalline transition and the crystalline melting point (T-m) at 300 degrees C. This polysaccharide was soluble in water and insoluble in any organic solvents tested; gelation occurred under alkaline conditions in the presence of divalent cations in which copper as CuSO4 gave the best result. Studies on the flocculation property revealed that this polysaccharide was stable at 4-60 degrees C and pH 5-7. The optimal concentrations for the flocculating activity were 2 mg/L polysaccharide and 40 mM CaCl2 which played the synergistic effect on kaolin flocculation. Moreover, this polysaccharide could flocculate the kaolin suspension over a wide range of pH (pH 2-8) and temperature (4-50 degrees C) tested in the presence of CaCl2. (c) 2006 Elsevier Ltd. All rights reserved.