20 resultados para galaxies: jets
em University of Queensland eSpace - Australia
Resumo:
A recent all-object spectroscopic survey centred on the Fornax cluster of galaxies has discovered a population of subluminous and extremely compact members, called 'ultra-compact dwarf' (UCD) galaxies. In order to clarify the origin of these objects, we have used self-consistent numerical simulations to study the dynamical evolution a nucleated dwarf galaxy would undergo if orbiting the centre of the Fornax cluster and suffering from its strong tidal gravitational field. We find that the outer stellar components of a nucleated dwarf are removed by the strong tidal field of the cluster, whereas the nucleus manages to survive as a result of its initially compact nature. The developed naked nucleus is found to have physical properties (e. g. size and mass) similar to those observed for UCDs. We also find that although this formation process does not have a strong dependence on the initial total luminosity of the nucleated dwarf, it does depend on the radial density profile of the dark halo in the sense that UCDs are less likely to be formed from dwarfs embedded in dark matter haloes with central 'cuspy' density profiles. Our simulations also suggest that very massive and compact stellar systems can be rapidly and efficiently formed in the central regions of dwarfs through the merging of smaller star clusters. We provide some theoretical predictions on the total number and radial number density profile of UCDs in a cluster and their dependencies on cluster masses.
Resumo:
We present BVI photometry of 190 galaxies in the central 4 x 3 deg(2) region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities. In this paper, we investigate the surface brightness-magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness-magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec(-2), it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness-magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation. B-V and V-I colours are determined for a sample of 113 cluster galaxies and the colour-magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour-magnitude relation. Their mean V - I colours (similar to1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour-magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.
Resumo:
We present a new, accurate measurement of the H I mass function of galaxies from the HIPASS Bright Galaxy Catalog, a sample of 1000 galaxies with the highest H I peak flux densities in the southern (delta
Resumo:
We present results from a pilot study of a new wide-field, multicolour (BVR) CCD imaging project, designed to examine galaxy evolution along large-scale filaments that connect clusters of galaxies at intermediate redshifts (0.07 < z < 0.20). Our pilot data set is based on 0.56 deg(2) of observations targeted on Abell 1079 and Abell 1084 using the Wide Field Imager on the Anglo-Australian Telescope. We describe our data reduction pipeline and show that our photometric error is 0.04 mag. By selecting galaxies that lie on the colour-magnitude relation of the two clusters we verify the existence of a low-density (similar to3-4 Mpc(-2)) filament population, conjoining them at a distance of > 3r(Abell) from either cluster. By applying a simple field correction, we characterize this filament population by examining their colour distribution on a (V-R)-(B-V) plane. We confirm the galaxian filament detection at a 7.5 sigma level using a cut at M-V = -18 and we discuss their broad properties.
Resumo:
Filaments of galaxies are known to stretch between galaxy clusters at all redshifts in a complex manner. In this Letter, we present an analysis of the frequency and distribution of intercluster galaxy filaments selected from the 2dF Galaxy Redshift Survey. Out of 805 cluster-cluster pairs, we find at least 40 per cent have bona fide filaments. We introduce a filament classification scheme and divide the filaments into several types according to their visual morphology: straight (lying on the cluster-cluster axis; 37 per cent), warped or curved (lying off the cluster-cluster axis; 33 per cent), sheets (planar configurations of galaxies; 3 per cent), uniform (1 per cent) and irregular (26 per cent). We find that straight filaments are more likely to reside between close cluster pairs and they become more curved with increasing cluster separation. This curving is toward a larger mass concentration in general. We also show that the more massive a cluster is, the more likely it is to have a larger number of filaments. Our results are found to be consistent with a cold dark matter cosmology.
Resumo:
We review the evidence that the ultra-compact dwarf (UCD) galaxies we recently discovered in the Fornax Cluster form a new, previously unknown class of galaxies and we discuss possible scenarios for their formation. We then present recent results that UCDs are also present in the Virgo Cluster, and that there is a much larger than expected population of fainter UCDs in the Fornax Cluster. The size and properties of this population may lead us to revise our original 'galaxy threshing' hypothesis for the formation of UCDs.
Resumo:
The Hi content of Hickson Compact Groups in the southern hemisphere is measured using data from the Hi Parkes All-Sky Survey (HIPASS), and dedicated observations using the narrow band filter on the Multibeam instrument on the Parkes telescope. The expected Hi mass of these groups was estimated using the luminosity, diameter, and morphological types of the member galaxies, calibrated from published data. Taking careful account of non-detection limits, the results show that the compact group population that has been detected by these observations has an Hi content similar to that of galaxies in the reference field sample. The upper limits for the undetected groups lie within the normal range; improvement of these limits will require a large increase in sensitivity.
Resumo:
We present new results of our wide-field redshift survey of galaxies in a 182 square degree region of the Shapley Supercluster (SSC) based on observations with the FLAIR-II spectrograph on the UK Schmidt Telescope (UKST). In this paper we present new measurements to give a total sample of redshifts for 710 bright (R less than or equal to 16.6) galaxies, of which 464 are members of the SSC (8000 < υ < 18 000 km s(-1)). Our data reveal that the main plane of the SSC (upsilon approximate to 14 500 km s(-1)) extends further than previously realised, filling the whole extent of our survey region of 10 degrees by 20 degrees on the sky (35 Mpc by 70 Mpc, for H-0 = 75 km s(-1) Mpc(-1)). There is also a significant structure associated with the slightly nearer Abell 3571 cluster complex (upsilon approximate to 12 000 km s(-1)) with a caustic structure evident out to a radius of 6 Mpc. These galaxies seem to link two previously identified sheets of galaxies and establish a connection with a third one at (V) over bar = 15 000 km s(-1) near RA = 13(h). They also tend to fill the gap of galaxies between the foreground Hydra-Centaurus region and the more distant SSC. We calculate galaxy overdensities of 5.0+/-0.1 over the 182 square degree region surveyed and 3.3+.-0.1 in a 159 square degree region excluding rich clusters. Over the large region of our survey the inter-cluster galaxies make up 46 per cent of all galaxies in the SSC region and may contribute a similar amount of mass to the cluster galaxies.
Resumo:
We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H I brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey ( HIPASS). The selection of the brightest sources is based on their H I peak flux density (S-peak greater than or similar to116 mJy) as measured from the spatially integrated HIPASS spectrum. The derived H I masses range from similar to10(7) to 4 x 10(10) M-.. While the BGC ( z< 0.03) is complete in S-peak, only a subset of &SIM;500 sources can be considered complete in integrated H I flux density (F-H I &GSIM;25 Jy km s(-1)). The HIPASS BGC contains a total of 158 new redshifts. These belong to 91 new sources for which no optical or infrared counterparts have previously been cataloged, an additional 51 galaxies for which no redshifts were previously known, and 16 galaxies for which the cataloged optical velocities disagree. Of the 91 newly cataloged BGC sources, only four are definite H I clouds: while three are likely Magellanic debris with velocities around 400 km s(-1), one is a tidal cloud associated with the NGC 2442 galaxy group. The remaining 87 new BGC sources, the majority of which lie in the zone of avoidance, appear to be galaxies. We identified optical counterparts to all but one of the 30 new galaxies at Galactic latitudes > 10degrees. Therefore, the BGC yields no evidence for a population of free-floating'' intergalactic H I clouds without associated optical counterparts. HIPASS provides a clear view of the local large-scale structure. The dominant features in the sky distribution of the BGC are the Supergalactic Plane and the Local Void. In addition, one can clearly see the Centaurus Wall, which connects via the Hydra and Antlia Clusters to the Puppis Filament. Some previously hardly noticable galaxy groups stand out quite distinctly in the H I sky distribution. Several new structures, including some not behind the Milky Way, are seen for the first time.
Resumo:
We present the largest catalogue to date of optical counterparts for H I radio-selected galaxies, HOPCAT. Of the 4315 H I radio-detected sources from the H I Parkes All Sky Survey (HIPASS) catalogue, we find optical counterparts for 3618 (84 per cent) galaxies. Of these, 1798 (42 per cent) have confirmed optical velocities and 848 (20 per cent) are single matches without confirmed velocities. Some galaxy matches are members of galaxy groups. From these multiple galaxy matches, 714 (16 per cent) have confirmed optical velocities and a further 258 (6 per cent) galaxies are without confirmed velocities. For 481 (11 per cent), multiple galaxies are present but no single optical counterpart can be chosen and 216 (5 per cent) have no obvious optical galaxy present. Most of these 'blank fields' are in crowded fields along the Galactic plane or have high extinctions. Isolated 'dark galaxy' candidates are investigated using an extinction cut of A(Bj) < 1 mag and the blank-fields category. Of the 3692 galaxies with an A(Bj) extinction < 1 mag, only 13 are also blank fields. Of these, 12 are eliminated either with follow-up Parkes observations or are in crowded fields. The remaining one has a low surface brightness optical counterpart. Hence, no isolated optically dark galaxies have been found within the limits of the HIPASS survey.
Resumo:
Filaments of galaxies are the dominant feature of modern large-scale redshift surveys. They can account for up to perhaps half of the baryonic mass budget of the Universe and their distribution and abundance can help constrain cosmological models. However, there remains no single, definitive way in which to detect, describe, and define what filaments are and their extent. This work examines a number of physically motivated, as well as statistical, methods that can be used to define filaments and examines their relative merits.
Resumo:
We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS-2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is sigma similar to 0.03 for redshifts less than 0.55 and worsens at higher redshift (similar to 0.06 for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.
Resumo:
We have discovered nine ultracompact dwarf galaxies (UCDs) in the Virgo Cluster, extending samples of these objects outside the Fornax Cluster. Using the Two Degree Field (2dF) multifiber spectrograph on the Anglo-Australian Telescope, the new Virgo members were found among 1500 color-selected, starlike targets with 16: 0 < b(j) < 20.2 in a 2 degrees diameter field centered on M87 (NGC 4486). The newly found UCDs are comparable to the UCDs in the Fornax Cluster, with sizes less than or similar to 100 pc, -12.9 < M-B < -10.7, and exhibiting red absorption-line spectra, indicative of an older stellar population. The properties of these objects remain consistent with the tidal threshing model for the origin of UCDs from the surviving nuclei of nucleated dwarf elliptical galaxies disrupted in the cluster core but can also be explained as objects that were formed by mergers of star clusters created in galaxy interactions. The discovery that UCDs exist in Virgo shows that this galaxy type is probably a ubiquitous phenomenon in clusters of galaxies; coupled with their possible origin by tidal threshing, the UCD population is a potential indicator and probe of the formation history of a given cluster. We also describe one additional bright UCD with M-B = -12.0 in the core of the Fornax Cluster. We find no further UCDs in our Fornax Cluster Spectroscopic Survey down to bj 19.5 in two additional 2dF fields extending as far as 3 degrees from the center of the cluster. All six Fornax bright UCDs identified with 2dF lie within 0.degrees 5 (projected distance of 170 kpc) of the central elliptical galaxy NGC 1399.
Resumo:
We present new measurements of the luminosity function (LF) of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) and the 2dF SDSS LRG and Quasar (2SLAQ) survey. We have carefully quantified, and corrected for, uncertainties in the K and evolutionary corrections, differences in the colour selection methods, and the effects of photometric errors, thus ensuring we are studying the same galaxy population in both surveys. Using a limited subset of 6326 SDSS LRGs (with 0.17 < z < 0.24) and 1725 2SLAQ LRGs (with 0.5 < z < 0.6), for which the matching colour selection is most reliable, we find no evidence for any additional evolution in the LRG LF, over this redshift range, beyond that expected from a simple passive evolution model. This lack of additional evolution is quantified using the comoving luminosity density of SDSS and 2SLAQ LRGs, brighter than M-0.2r - 5 log h(0.7) = - 22.5, which are 2.51 +/- 0.03 x 10(-7) L circle dot Mpc(-3) and 2.44 +/- 0.15 x 10(-7) L circle dot Mpc(-3), respectively (< 10 per cent uncertainty). We compare our LFs to the COMBO-17 data and find excellent agreement over the same redshift range. Together, these surveys show no evidence for additional evolution (beyond passive) in the LF of LRGs brighter than M-0.2r - 5 log h(0.7) = - 21 ( or brighter than similar to L-*).. We test our SDSS and 2SLAQ LFs against a simple 'dry merger' model for the evolution of massive red galaxies and find that at least half of the LRGs at z similar or equal to 0.2 must already have been well assembled (with more than half their stellar mass) by z similar or equal to 0.6. This limit is barely consistent with recent results from semi-analytical models of galaxy evolution.
Resumo:
We present the result of investigations into two theories to explain the star formation rate (SFR)-density relationship. For regions of high galaxy density, either there are fewer star-forming galaxies or galaxies capable of forming stars are present but some physical process is suppressing their star formation. We use H I Parkes All-Sky Survey's (HIPASS) HI detected galaxies and infrared and radio fluxes to investigate SFRs and efficiencies with respect to local surface density. For nearby (vel < 10 000 km s(-1)) H I galaxies, we find a strong correlation between H I mass and SFR. The number of H I galaxies decreases with increasing local surface density. For H I galaxies (1000 < vel < 6000 km s(-1)), there is no significant change in the SFR or the efficiency of star formation with respect to local surface density. We conclude that the SFR-density relation is due to a decrease in the number of H I star-forming galaxies in regions of high galaxy density and not to the suppression of star formation.