101 resultados para gE and TK deletion mutants

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene encoding the large conductance mechanosensitive ion channel (MscL) of Escherichia coli and several deletion mutants of mscL were cloned under the control of the T7 RNA polymerase promoter. Transformation of these constructs into an E. coli strain carrying an inducible T7 RNA polymerase gene allowed the specific production and labelling of MscL with [S-35]methionine. Preparation of membrane fractions of E. coli cells by sucrose gradient centrifugation indicated that the radiolabelled MscL was present in the inner cytoplasmic membrane in agreement with results of several studies. However, treatment of the labelled cells and cell membrane vesicles with various cross-linkers resulted in the majority of labelled protein migrating as a monomer with a small proportion of molecules (approximate to 25%) migrating as dimers and higher order multimers. This result is in contrast with a finding of a study suggesting that the channel exclusively forms hexamers in the cell membrane off. coli (1) and therefore may have profound implication for the activation and/or ''multimerization'' of the channel by mechanical stress exerted to the membrane. In addition, from the specific activity of the radiolabelled protein and the amount of protein in the cytoplasmic membrane fraction we estimated the number of MscL ion channels expressed under these conditions to be approximately 50 channels per single bacterium. (C) 1997 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structurally related tetratricopeptide repeat motifs in steroid receptor-associated immunophilins and the STI1 homolog, Hop, mediate the interaction with a common cellular target, hsp90, We have identified the binding domain in hsp90 for cyclophilin 40 (CyP40) using a two-hybrid system screen of a mouse cDNA library. All isolated clones encoded the intact carboxyl terminus of hsp90 and overlapped with a common region corresponding to amino acids 558-724 of murine hsp84, The interaction was confirmed in vitro with bacterially expressed CyP40 and deletion mutants of hsp90 beta and was delineated further to a 124-residue COOH-terminal segment of hsp90, Deletion of the conserved MEEVD sequence at the extreme carboxyl terminus of hsp90 precludes interaction with CyP40, signifying an important role for this motif in hsp90 function. We show that CyP40 and Hop display similar interaction profiles with hsp90 truncation mutants and present evidence for the direct competition of Hop and FK506-binding protein 52 with CyP40 for binding to the hsp90 COOH-terminal region. Our results are consistent with a common tetratricopeptide repeat interaction site for Hop and steroid receptor associated immunophilins within a discrete COOH-terminal domain of hsp90. This region of hsp90 mediates ATP-independent chaperone activity, overlaps the hsp90 dimerization domain, and includes structural elements important for steroid receptor interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) family of receptors promotes the survival, proliferation, and differentiation of cells of the myeloid compartment. Several signaling pathways are activated downstream of the receptor, however it is not clear how these induce specific biologic outcomes. We have previously identified 2 classes of constitutively active mutants of the shared signaling subunit, human (h) betac, of the human GM-CSF/interieukin-3 (IL-3)/IL-5 receptors that exhibit different modes of signaling. In a factor-dependent bipotential myeloid cell line, FDB1, an activated mutant containing a substitution in the transmembrane domain (V449E) induces factor-independent proliferation and survival, while mutants in the extracellular domain induce factor-independent granulocyte-macrophage differentiation. Here we have used further mutational analysis to demonstrate that there are nonredundant functions for several regions of the cytoplasmic domain with regard to mediating proliferation, viability, and differentiation, which have not been revealed by previous studies with the wild-type GM-CSF receptor. This unique lack of redundancy has revealed an association of a conserved membrane-proximal region with viability signaling and a critical but distinct role for tyrosine 577 in the activities of each class of mutant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two families, originally diagnosed as having nonsyndromic X-linked mental retardation (NSXLMR), were reviewed when it was shown that they had a 24-bp duplication (428-45 1dup(24bp)) in the ARX gene [Stromme et al., 2002: Nat Genet 30:441-445]. This same duplication had also been found in three other families: one with X-linked infantile spasms and hypsarrhythmia (X-linked West syndrome, MIM 308350) and two with XLMR and dystonic movements of the hands (Partington syndrome, MIM 309510). On review, manifestations of both West and Partington syndromes were found in some individuals from both families. In addition, it was found that one individual had autism and two had autistic behavior, one of whom had epilepsy. The degree of mental retardation ranged from mild to severe. A GCG trinucleotide expansion (GCG)10+7 and a deletion of 1,517 by in the ARX gene have also been found in association with the West syndrome, and a missense mutation (1058C >T) in a family with a newly recognized form of myoclonic epilepsy, severe mental retardation, and spastic paraplegia [Scheffer et al., 2002: Neurology, in press]. Evidently all these disorders are expressions of mutations in the same gene. It remains to be seen what proportions of patients with infantile spasms, focal dystonia, autism, epilepsy, and nonsyndromic mental retardation are accounted for by mutations in the ARX gene. (C) 2002 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase II glutathione S-transferases (GSTs) GSTT1, GSTM1 and GSTP1 catalyse glutathione-mediated reduction of exogenous and endogenous electrophiles. These GSTs have broad and overlapping substrate specificities and it has been hypothesized that allelic variants associated with less effective detoxification of potential carcinogens may confer an increased susceptibility to cancer. To assess the role of GST gene variants in ovarian cancer development, we screened 285 epithelial ovarian cancer cases and 299 unaffected controls for the GSTT1 deletion (null) variant, the GSTM1 deletion (null) variant and the GSTP1 codon 104 A-->G Ile-->Val amino acid substitution variant, The frequencies of the GSTT1, GSTM1 and GSTP1 polymorphic variants did not vary with tumour behaviour (low malignant potential or invasive) or p53 immunohistochemical status. There was a suggestion that ovarian cancers of the endometrioid or clear cell histological subtype had a higher frequency of the GSTT1 and GSTM1 deletion genotype than other histological subgroups. The GSTT1, GSTM1 and GSTP1 genotype distributions did not differ significantly between unaffected controls and ovarian cancer cases (overall or invasive cancers only). However, the GSTM1 null genotype was associated with increased risk of endometrioid/clear cell invasive cancer [age-adjusted OR (95% CI) = 2.04 (1.01-4.09), P = 0.05], suggesting that deletion of GSTM1 may increase the risk of ovarian cancer of these histological subtypes specifically. This marginally significant finding will require verification by independent studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The case is presented of a female infant with a distal deletion of 8p (8p23.1 --> pter) whose development was monitored over a 5-year period from 12 months of age. Although previous literature has suggested that 8p deletion is associated with mild to moderate intellectual disability, the child reported here has normal intelligence. Despite initial delays in gross motor and language skills, cognitive development (assessed with the Bayley Scales of Infant Development) and intellectual ability (measured on the Stanford-Binet Intelligence Scale) were within average range. It is argued that the small number of previous case reports may have created a misleading impression of intellectual development in individuals with distal deletions of 8p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The veg1 (vegetative) mutant in pea (Pisum sativum L.) does not flower under any circumstances and gi (gigas) mutants remain vegetative under certain conditions. gi plants are deficient in production of floral stimulus, whereas veg1 plants lack a response to floral stimulus. During long days in particular, these non-flowering mutant plants eventually enter a stable compact phase characterised by a large reduction in internode length, small leaves and growth of lateral shoots from the upper-stem (aerial) nodes. The first-order laterals in turn produce second-order laterals and so on in a reiterative pattern. The apical bud is reduced in size but continues active growth. Endogenous hormone measurements and gibberellin application studies with gi-1, gi-2 and veg1 plants indicate that a reduction in gibberellin and perhaps indole-3-acetic acid level may account, at least partially, for the compact aerial shoot phenotype. In the gi-1 mutant, the compact phenotype is rescued by transfer from a 24- to an 8-h photoperiod. We propose that in plants where flowering is prevented by a lack of floral stimulus or an inability to respond, the large reduction in photoperiod gene activity during long days may lead to a reduction in apical sink strength that is manifest in an altered hormone profile and weak apical dominance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the native alpha-conotoxin PnIA, its synthetic derivative [ A10L] PnIA and alanine scan derivatives of [ A10L] PnIA were investigated on chick wild type alpha7 and alpha7-L247T mutant nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes. PnIA and [A10L] PnIA inhibited acetylcholine (ACh)-activated currents at wtalpha7 receptors with IC50 values of 349 and 168 nM, respectively. Rates of onset of inhibition were similar for PnIA and [ A10L] PnIA; however, the rate of recovery was slower for [ A10L] PnIA, indicating that the increased potency of [ A10L] PnIA at alpha7 receptors is conveyed by its slower rate of dissociation from the receptors. All the alanine mutants of [ A10L] PnIA inhibited ACh-activated currents at wtalpha7 receptors. Insertion of an alanine residue between position 5 and 13 and at position 15 significantly reduced the ability of [ A10L] PnIA to inhibit ACh-evoked currents. PnIA inhibited the non-desensitizing ACh-activated currents at alpha7-L247T receptors with an IC50 194 nM. In contrast, [ A10L] PnIA and the alanine mutants potentiated the ACh-activated current alpha7-L247T receptors and in addition [ A10L] PnIA acted as an agonist. PnIA stabilized the receptor in a state that is non-conducting in both the wild type and mutant receptors, whereas [ A10L] PnIA stabilized a state that is non-conducting in the wild type receptor and conducting in the alpha7-L247T mutant. These data indicate that the change of a single amino acid side-chain, at position 10, is sufficient to change the toxin specificity for receptor states in the alpha7-L247T mutant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The psaBCA locus of Streptococcus pneumoniae encodes a putative ABC Mn2+-permease complex. Downstream of the operon is psaD, which may be co-transcribed and encodes a thiol peroxidase. Previously, there has been discordance concerning the phenotypic impact of mutations in the psa locus, resolution of which has been complicated by differences in mutant construction and the possibility of polar effects. Here, we constructed unmarked, in frame deletion mutants DeltapsaB, DeltapsaC, DeltapsaA, DeltapsaD, DeltapsaBC, DeltapsaBCA and DeltapsaBCAD in S. pneumoniae D39 to examine the role of each gene within the locus in Mn2+ uptake, susceptibility to oxidative stress, virulence, nasopharyngeal colonization and chain morphology. The requirement for Mn2+ for growth and transformation was also investigated for all mutants. Inductively coupled plasma mass spectrometry (ICP-MS) analysis provided the first direct evidence that PsaBCA is indeed a Mn2+ transporter. However, this study did not substantiate previous reports that the locus plays a role in choline-binding protein pro-duction or chain morphology. We also confirmed the importance of the Psa permease in systemic virulence and resistance to superoxide and hydrogen peroxide, as well as demonstrating a role in nasopharyngeal colonization for the first time. Further evi-dence is provided to support the requirement for Mn2+ supplementation for growth and transformation of DeltapsaB, DeltapsaC, DeltapsaA, DeltapsaBC, DeltapsaBCA and DeltapsaBCAD mutants. However, transformation, as well as growth, of the DeltapsaD mutant was not dependent upon Mn2+ supplementation. We also show that, apart from sensitivity to hydrogen peroxide, the DeltapsaD mutant exhibited essentially similar phenotypes to those of the wild type. Western blot analysis with a PsaD antiserum showed that deleting any of the genes upstream of psaD did not affect its expression. However, we found that deleting psaB resulted in decreased expression of PsaA relative to that in D39, whereas deleting both psaB and psaC resulted in at least wild-type levels of PsaA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mechanism Underlying the development of tolerance to morphine, is still incompletely understood. Morphine binds to opioid receptors, Which in turn activates downstream second messenger cascades through heterotrimeric guanine nucleotide binding proteins (G proteins). In this paper, we show that G(z), a member of the inhibitory G protein family, plays an important role in mediating the analgesic and lethality effects of morphine after tolerance development. We blocked signaling through the G(z) second messenger cascade by genetic ablation of the alpha subunit of the G protein in mice. The Galpha(z) knockout Mouse develops significantly increased tolerance to morphine. which depends oil Galpha(z), gene dosage. Further experiments demonstrate that the enhanced morphine tolerance is not caused by pharmacokinetic and behavioural learning mechanisms. The results suggest that G(z) signaling pathways are involved ill transducing the analgesic and lethality effects of morphine following chronic morphine treatment. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oligomeric lipid raft-associated integral protein stomatin normally localizes to the plasma membrane and the late endosomal compartment. Similar to the caveolins, it is targeted to lipid bodies (LBs) on overexpression. Endogenous stomatin also associates with LBs to a small extent. Green fluorescent protein-tagged stomatin (StomGFP) and the dominant-negative caveolin-3 mutant DGV(cav3)(HA) occupy distinct domains on LB surfaces but eventually intermix. Studies of StomGFP deletion mutants reveal that the region for membrane association but not oligomerization and raft association is essential for LB targeting. Blocking protein synthesis leads to the redistribution of StomGFP from LBs to LysoTracker-positive vesicles indicating a connection with the late endosomal/ lysosomal pathway. Live microscopy of StomGFP reveals multiple interactions between LBs and microtubule-associated vesicles possibly representing signaling events and/or the exchange of cargo. Proteomic analysis of isolated LBs identifies adipophilin and TIP47, various lipid-specific enzymes, cytoskeletal components, chaperones, Ras-related proteins, protein kinase D2, and other regulatory proteins. The association of the Rab proteins 1, 6, 7, 10, and 18 with LBs indicates various connections to other compartments. Our data suggest that LBs are not only involved in the storage of lipids but also participate actively in the cellular signaling network and the homeostasis of lipids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to compare the robustness of the event-related potential (ERP) response, called the mismatch negativity (MMN), when elicited by simple tone stimuli (differing in frequency, duration, or intensity) and speech stimuli (CV nonword contrast /de:/ vs. /ge:/ and CV word contrast /deI/ vs. /geI/). The study was conducted using 30 young adult subjects (Groups A and B; n = 15 each). The speech stimuli were presented to Group A at a stimulus onset asynchrony (SOA) of 610 msec and to Group B at an SOA of 900 msec. The tone stimuli were presented to both groups at an SOA of 610 msec. MMN responses were elicited by the simple tone stimuli (66.7%-96.7% of subjects with MMN "present," or significantly different from zero, p < 0.05) but not the speech stimuli (10% subjects with MMN present for nonwords, 10% for words). The length of the SOA (610 msec or 900 msec) had no effect on the ability to obtain consistent MMN responses to the speech stimuli. The results indicated a lack of robust MMN elicited by speech stimuli with fine acoustic contrasts under carefully controlled methodological conditions. The implications of these results are discussed in relation to conflicting reports in the literature of speech-elicited MMNs, and the importance of appropriate methodological design in MMN studies investigating speech processing in normal and pathological populations.