33 resultados para functions of soil fauna
em University of Queensland eSpace - Australia
Resumo:
A new conceptual model for soil pore-solid structure is formalized. Soil pore-solid structure is proposed to comprise spatially abutting elements each with a value which is its membership to the fuzzy set ''pore,'' termed porosity. These values have a range between zero (all solid) and unity (all pore). Images are used to represent structures in which the elements are pixels and the value of each is a porosity. Two-dimensional random fields are generated by allocating each pixel a porosity by independently sampling a statistical distribution. These random fields are reorganized into other pore-solid structural types by selecting parent points which have a specified local region of influence. Pixels of larger or smaller porosity are aggregated about the parent points and within the region of interest by controlled swapping of pixels in the image. This creates local regions of homogeneity within the random field. This is similar to the process known as simulated annealing. The resulting structures are characterized using one-and two-dimensional variograms and functions describing their connectivity. A variety of examples of structures created by the model is presented and compared. Extension to three dimensions presents no theoretical difficulties and is currently under development.
Resumo:
Conservation of biodiversity can generate considerable indirect economic value and this is being increasingly recognized in China. For a forest ecosystem type of a nature reserve, the most important of its values are its ecological functions which provide human beings and other living things with beneficial environmental services. These services include water conservancy, soil protection, CO2 fixation and O-2 release, nutrient cycling, pollutant decomposition, and disease and pest control. Based on a case study in Changbaishan Mountain Biosphere Reserve in Northeast China, this paper provides a monetary valuation of these services by using opportunity cost and alternative cost methods. Using such an approach, this reserve is valued at 510.11 million yuan (USD 61.68 mill.) per year, 10 times higher than the opportunity cost (51.78 mill. yuan/ha.a) for regular timber production. While China has heeded United Nations Environmental Program (UNEP)'s call for economic evaluation of ecological functions, the assessment techniques used need to be improved in China and in the West for reasons mentioned.
Resumo:
Numerous studies in the last 60 years have investigated the relationship between land slope and soil erosion rates. However, relatively few of these have investigated slope gradient responses: ( a) for steep slopes, (b) for specific erosion processes, and ( c) as a function of soil properties. Simulated rainfall was applied in the laboratory on 16 soils and 16 overburdens at 100 mm/h to 3 replicates of unconsolidated flume plots 3 m long by 0.8 m wide and 0.15 m deep at slopes of 20, 5, 10, 15, and 30% slope in that order. Sediment delivery at each slope was measured to determine the relationship between slope steepness and erosion rate. Data from this study were evaluated alongside data and existing slope adjustment functions from more than 55 other studies from the literature. Data and the literature strongly support a logistic slope adjustment function of the form S = A + B/[1 + exp (C - D sin theta)] where S is the slope adjustment factor and A, B, C, and D are coefficients that depend on the dominant detachment and transport processes. Average coefficient values when interill-only processes are active are A - 1.50, B 6.51, C 0.94, and D 5.30 (r(2) = 0.99). When rill erosion is also potentially active, the average slope response is greater and coefficient values are A - 1.12, B 16.05, C 2.61, and D 8.32 (r(2) = 0.93). The interill-only function predicts increases in sediment delivery rates from 5 to 30% slope that are approximately double the predictions based on existing published interill functions. The rill + interill function is similar to a previously reported value. The above relationships represent a mean slope response for all soils, yet the response of individual soils varied substantially from a 2.5-fold to a 50-fold increase over the range of slopes studied. The magnitude of the slope response was found to be inversely related ( log - log linear) to the dispersed silt and clay content of the soil, and 3 slope adjustment equations are proposed that provide a better estimate of slope response when this soil property is known. Evaluation of the slope adjustment equations proposed in this paper using independent datasets showed that the new equations can improve soil erosion predictions.
Resumo:
We lack a thorough conceptual and functional understanding of fine roots. Studies that have focused on estimating the quantity of fine roots provide evidence that they dominate overall plant root length. We need a standard procedure to quantify root length/biomass that takes proper account of fine roots. Here we investigated the extent to which root length/biomass may be underestimated using conventional methodology, and examined the technical reasons that could explain such underestimation. Our discussion is based on original X-ray-based measurements and on a literature review spanning more than six decades. We present evidence that root-length recovery depends strongly on the observation scale/spatial resolution at which measurements are carried out; and that observation scales/resolutions adequate for fine root detection have an adverse impact on the processing times required to obtain precise estimates. We conclude that fine roots are the major component of root systems of most (if not all) annual and perennial plants. Hence plant root systems could be much longer, and probably include more biomass, than is widely accepted.
Resumo:
This study examined the effect of soil type on burrowing behaviour and cocoon formation during aestivation in the green-striped burrowing frog, Cyclorana alboguttata (Gunther, 1867). Given a choice, frogs always chose to burrow in wet sand in preference to wet clay. Frogs buried themselves faster and dug deeper burrows in sandy soil. However, under my laboratory conditions, there was little difference in the pattern of soil drying between the two soil types. Frogs in both sand and clay soil experienced hydrating conditions for the first 3amonths and dehydrating conditions for the last 3amonths of the 6-month aestivation period, and cocoons were not formed until after 3amonths of aestivation. After 6amonths, there were more layers in the cocoons of frogs aestivating in sand than those aestivating in clay. Frogs were able to absorb water from sandy soil with water potentials greater than -400akPa, but lost water when placed on sand with a water potential of -1000akPa.
Resumo:
The paper disputes two influential claims in the Romance Linguistics literature. The first is that the synthetic future tenses in spoken Western Romance are now rivalled, if not supplanted, as temporal functors by the more recently developed GO futures. The second is that these synthetic futures now have modal rather than temporal meanings in spoken Romance. These claims are seen as reflecting a universal cycle of diachronic change, in which verb forms originally expressing modal (or aspectual) values take on future temporal reference, becoming tenses. The new modal meanings supplant the temporal, which are then taken up by new forms. Challenges to this theory for French are raised on the basis of empirical evidence of two sorts. Positively, future tenses in spoken Romance continue to be used with temporal meaning. Negatively, evidence of modal meaning for these forms is lacking. The evidence comes froma corpora of spoken French, native speaker judgements and verb data from a daily broadsheet. Cumulatively, it points to the reverse of the claims noted above: the synthetic future in spoken French has temporal but little modal meaning.
Resumo:
Correct placement of the division septum in Escherichia coli requires the co-ordinated action of three proteins, MinC, MinD and MinE. MinC and MinD interact to form a non-specific division inhibitor that blocks septation at all potential division sites. MinE is able to antagonize MinCD in a topologically sensitive manner, as it restricts MinCD activity to the unwanted division sites at the cell poles, Here, we show that the topological specificity function of MinE residues in a structurally autonomous, trypsin-resistant domain comprising residues 31-88, Nuclear magnetic resonance (NMR) and circular dichroic spectroscopy indicate that this domain includes both alpha and beta secondary structure, while analytical ultracentrifugation reveals that it also contains a region responsible for MinE homodimerization. While trypsin digestion indicates that the anti-MinCD domain of MinE (residues 1-22) does not form a tightly folded structural domain, NMR analysis of a peptide corresponding to MinE(1-22) indicates that this region forms a nascent helix in which the peptide rapidly interconverts between disordered (random coil) and alpha-helical conformations, This suggests that the N-terminal region of MinE may be poised to adopt an alpha-helical conformation when it interacts with the target of its anti-MinCD activity, presumably MinD.
Resumo:
Under certain soil conditions, e.g. hardsetting clay B-horizons of South-Eastern Australia, wheat plants do not perform as well as would be expected given measurements of bulk soil attributes. In such soils, measurement indicates that a large proportion (80%) of roots are preferentially located in the soil within 1 mm of macropores. This paper addresses the question of whether there are biological and soil chemical effects concomitant with this observed spatial relationship. The properties of soil manually dissected from the 1-3 mm wide region surrounding macropores, the macropore sheath, were compared to those that are measured in a conventional manner on the bulk soil. Field specimens of two different soil materials were dissected to examine biological differentiation. To ascertain whether the macropore sheath soil differs from rhizosphere soil, wheat was grown in structured and repacked cores under laboratory conditions. The macropore sheath soil contained more microbial biomass per unit mass than both the bulk soil and the rhizosphere. The bacterial population in the macropore sheath was able to utilise a wider range of carbon substrates and to a greater extent than the bacterial population in the corresponding bulk soil. These differences between the macropore sheath and bulk soil were almost non-existent in the repacked cores. Evidence for larger numbers of propagules of the broad host range fungus Pythium in the macropore sheath soil were also obtained.
Resumo:
It is now well recognized that cervical cancer is caused by infection with certain human papillomavirus (HPV) subtypes and while interferon-alpha (IFN-alpha) is used to treat HPV-infected lesions, HPV appears to have developed a means to avoid the effects of IFN-alpha. Clinically, resistance appears to be associated with the expression of the E7 oncoprotein. Here we investigated the effects of expression in cells of the E7 protein from high- and low-risk papillomavirus subtypes on a range of responses to IFN-alpha. 2fTGH, a cell line dependent on IFN-alpha for growth in selection medium, grew significantly less well in the presence of E7, and the antiproliferative effects of IFN-alpha upon epithelial cells was lost upon E7 expression. The antiviral effects of IFN-alpha were abrogated in E7-expressing cells. Loss of response to IFN-alpha was found to occur in both high- and low-risk papillomaviruses. Finally, deletion of amino acids 21-24 of HPV type 16 E7 protein partially reversed repression. We conclude that E7 inhibits the functional effects of IFN-alpha and that this property is shared by all HPV subtypes tested. (C) 2000 Academic Press.
Resumo:
The increased use of trickle or drip irrigation is seen as one way of helping to improve the sustainability of irrigation systems around the world. However, soil water and solute transport properties and soil profile characteristics are often not adequately incorporated in the design and management of trickle systems. In this paper, we describe results of a simulation study designed to highlight the impacts of soil properties on water and solute transport from buried trickle emitters. The analysis addresses the influence of soil hydraulic properties, soil layering, trickle discharge rate, irrigation frequency, and timing of nutrient application on wetting patterns and solute distribution. We show that (1) trickle irrigation can improve plant water availability in medium and low permeability fine-textured soils, providing that design and management are adapted to account for their soil hydraulic properties, (2) in highly permeable coarse-textured soils, water and nutrients move quickly downwards from the emitter, making it difficult to wet the near surface zone if emitters are buried too deep, and (3) changing the fertigation strategy for highly permeable coarse-textured soils to apply nutrients at the beginning of an irrigation cycle can maintain larger amounts of nutrient near to and above the emitter, thereby making them less susceptible to leaching losses. The results demonstrate the need to account for differences in soil hydraulic properties and solute transport when designing irrigation and fertigation management strategies. Failure to do this will result in inefficient systems and lost opportunities for reducing the negative environmental impacts of irrigation.
Resumo:
This paper describes the construction of Australia-wide soil property predictions from a compiled national soils point database. Those properties considered include pH, organic carbon, total phosphorus, total nitrogen, thickness. texture, and clay content. Many of these soil properties are used directly in environmental process modelling including global climate change models. Models are constructed at the 250-m resolution using decision trees. These relate the soil property to the environment through a suite of environmental predictors at the locations where measurements are observed. These models are then used to extend predictions to the continental extent by applying the rules derived to the exhaustively available environmental predictors. The methodology and performance is described in detail for pH and summarized for other properties. Environmental variables are found to be important predictors, even at the 250-m resolution at which they are available here as they can describe the broad changes in soil property.
Resumo:
The EphA4 receptor tyrosine kinase regulates the formation of the corticospinal tract (CST), a pathway controlling voluntary movements, and of the anterior commissure (AC), connecting the neocortical temporal robes. To study EphA4 kinase signaling in these processes, we generated mice expressing mutant EphA4 receptors either lacking kinase activity or with severely downregulated kinase activity. We demonstrate that EphA4 is required for CST formation as a receptor for which it requires an active kinase domain. In contrast, the formation of the AC is rescued by kinase-dead EphA4, suggesting that in this structure EphA4 acts as a ligand for which its kinase activity is not required. Unexpectedly, the cytoplasmic sterile-alpha motif (SAM) domain is not required for EphA4 functions. Our findings establish both kinase-dependent and kinase-independent functions of EphA4 in the formation of major axon tracts.
Resumo:
The effect of the solid and dissolved organic matter fractions, mineral composition and ionic strength of the soil solution on the sorption behaviour of pesticides were studied. A number of soils, chosen so as to have different clay mineral and organic carbon content, were used to study the sorption of the pesticides atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine), 2,4-D ((2,4-dichlorophenoxy) acetic acid), isoproturon (3-(4-isopropylphenyl)1,1-dimethylurea) and paraquat (1,1'-dimethyl-4,4'-bipyridinium) in the presence of low and high levels of dissolved organic carbon and different background electrolytes. The sorption behaviour of atrazine, isoproturon and paraquat was dominated by the solid state soil components and the presence of dissolved organic matter had little effect. The sorption of 2,4-D was slightly affected by the soluble organic matter in the soil. However, this effect may be due to competition for adsorption sites between the pesticide and the soluble organic matter rather than due to a positive interaction between the pesticide and the soluble fraction of soil organic matter. It is concluded that the major factor governing the sorption of these pesticides is the solid state organic fraction with the clay mineral content also making a significant contribution. The dissolved organic carbon fraction of the total organic carbon in the soil and the ionic strength of the soil solution appear to have little or no effect on the sorption/transport characteristics of these pesticides over the range of concentrations studied. (C) 2002 Elsevier Science B.V. All rights reserved.