6 resultados para food selection

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Path analysis of attitudinal, motivational, demographic and behavioural factors influencing food choice among Australian consumers who had consumed at least some organic food in the preceding 12 months showed that concern with the naturalness of food and the sensory and emotional experience of eating were the major determinants of increasing levels of organic consumption. Increasing consumption was also related to other 'green consumption' behaviours such as recycling and to lower levels of concern with convenience in the purchase and preparation of food. Most of these factors were, in turn, strongly affected by gender and the level of responsibility taken by respondents for food provisioning within their households, a responsibility dominated by women. Education had a slightly negative effect on the levels of concern for sensory and emotional appeal due to lower levels of education among women. Income, age, political and ecological values and willingness to pay a premium for safe and environmentally friendly foods all had extremely minor effects. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using multiple-choice feeding experiments, the selection of six species of macrophytes by the herbivorous rabbitfish Siganus fuscescens was examined. The rabbitfish showed distinct food choice in the laboratory; however, selection of macrophytes by S. fuscescens was not related to their absolute nutrient content (nitrogen, carbon, energy and ash free dry mass). Nutrient assimilation estimates showed that the macrophytes which were most preferred were those that S. fuscescens assimilated best. In S. fuscescens, the macrophytes that were preferred passed through the gut significantly faster than the less preferred species. Gut transit time had a significant effect on the absolute value of a food item in terms of net nutrient gain per unit time. This study showed that food value could be inferred from the absolute nutrient content of the macrophytes. Thus both the ability to assimilate nutrients as well as the absolute nutrient content of macrophytes must be quantified when assessing food value. (C) 2004 The Fisheries society of the British Isles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of antibiotic resistance among pathogenic and commensal bacteria has become a serious problem worldwide. The use and overuse of antibiotics in a number of settings are contributing to the development of antibiotic-resistant microorganisms. The class 1 and 2 integrase genes (intI1 and intI2, respectively) were identified in mixed bacterial cultures enriched from bovine feces by growth in buffered peptone water (BPW) followed by integrase-specific PCR. Integrase-positive bacterial colonies from the enrichment cultures were then isolated by using hydrophobic grid membrane filters and integrase-specific gene probes. Bacterial clones isolated by this technique were then confirmed to carry integrons by further testing by PCR and DNA sequencing. Integron-associated antibiotic resistance genes were detected in bacteria such as Escherichia coli, Aeromonas spp., Proteus spp., Morganella morganii, Shewanella spp., and urea-positive Providencia stuartii isolates from bovine fecal samples without the use of selective enrichment media containing antibiotics. Streptomycin and trimethoprim resistance were commonly associated with integrons. The advantages conferred by this methodology are that a wide variety of integron-containing bacteria may be simultaneously cultured in BPW enrichments and culture biases due to antibiotic selection can be avoided. Rapid and efficient identification, isolation, and characterization of antibiotic resistance-associated integrons are possible by this protocol. These methods will facilitate greater understanding of the factors that contribute to the presence and transfer of integron-associated antibiotic resistance genes in bacterial isolates from red meat production animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primates have X chromosome genes for cone photopigments with sensitivity maxima from 535 to 562 nm. Old World monkeys and apes (catarrhines) and the New World ( platyrrhine) genus Alouatta have separate genes for 535-nm ( medium wavelength; M) and 562-nm ( long wavelength; L) pigments. These pigments, together with a 425-nm ( short wavelength) pigment, permit trichromatic color vision. Other platyrrhines and prosimians have a single X chromosome gene but often with alleles for two or three M/L photopigments. Consequently, heterozygote females are trichromats, but males and homozygote females are dichromats. The criteria that affect the evolution of M/L alleles and maintain genetic polymorphism remain a puzzle, but selection for finding food may be important. We compare different types of color vision for detecting more than 100 plant species consumed by tamarins ( Saguinus spp.) in Peru. There is evidence that both frequency-dependent selection on homozygotes and heterozygote advantage favor M/L polymorphism and that trichromatic color vision is most advantageous in dim light. Also, whereas the 562-nm allele is present in all species, the occurrence of 535- to 556-nm alleles varies between species. This variation probably arises because trichromatic color vision favors widely separated pigments and equal frequencies of 535/543- and 562-nm alleles, whereas in dichromats, long-wavelength pigment alleles are fitter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The net effect of sexual selection on nonsexual fitness is controversial. On one side, elaborate display traits and preferences for them can be costly, reducing the nonsexual fitness of individuals possessing them, as well as their offspring, In contrast, sexual selection may reinforce nonsexual fitness if an individual's attractiveness and quality are genetically correlated. According to recent models, such good-genes mate choice should increase both the extent and rate of adaptation. We evolved 12 replicate populations of Drosophila serrata in a powerful two-way factorial experimental design to test the separate and combined contributions of natural and sexual selection to adaptation to a novel larval food resource. Populations evolving in the presence of natural selection had significantly higher mean nonsexual fitness when measured over three generations (13-15) during the course of experimental evolution (16-23% increase). The effect of natural selection was even more substantial when measured in a standardized, monogamous mating environment at the end of the experiment (generation 16; 52% increase). In contrast, and despite strong sexual selection on display traits, there was no evidence from any of the four replicate fitness measures that sexual selection promoted adaptation. In addition, a comparison of fitness measures conducted under different mating environments demonstrated a significant direct cost of sexual selection to females, likely arising from some form of male-induced harm. Indirect benefits of sexual selection in promoting adaptation to this novel resource environment therefore appear to be absent in this species, despite prior evidence suggesting the operation of good-genes mate choice in their ancestral environment. How novel environments affect the operation of good-genes mate choice is a fundamental question for future sexual selection research.