4 resultados para fontes iconográficas
em University of Queensland eSpace - Australia
Resumo:
Importin-alpha is the nuclear import receptor that recognizes cargo proteins which contain classical monopartite and bipartite nuclear localization sequences (NLSs), and facilitates their transport into the nucleus. To determine the structural basis of the recognition of the two classes of NLSs by mammalian importin-alpha, we co-crystallized an N-terminally truncated mouse receptor protein with peptides corresponding to the monopartite NLS from the simian virus 40 (SV40) large T-antigen, and the bipartite NLS from nucleoplasmin. We show that the monopartite SV40 large T-antigen NLS binds to two binding sites on the receptor, similar to what was observed in yeast importin-alpha. The nucleoplasmin NLS-importin-alpha complex shows, for the first time, the mode of binding of bipartite NLSs to the receptor. The two basic clusters in the NLS occupy the two binding sites used by the monopartite NLS, while the sequence linking the two basic clusters is poorly ordered, consistent with its tolerance to mutations. The structures explain the structural basis for binding of diverse NLSs to the sole receptor protein. (C) 2000 Academic Press.
Resumo:
Proteins containing the classical nuclear localization sequences (NLSs) are imported into the nucleus by the importin-alpha/beta heterodimer. Importin-alpha contains the NLS binding site, whereas importin-beta mediates the translocation through the nuclear pore. We characterized the interactions involving importin-alpha during nuclear import using a combination of biophysical techniques (biosensor, crystallography, sedimentation equilibrium, electrophoresis, and circular dichroism). Importin-alpha is shown to exist in a monomeric autoinhibited state (association with NLSs undetectable by biosensor). Association with importin-beta (stoichiometry, 1:1; K-D = 1.1 x 10(-8) m) increases the affinity for NLSs; the importin-alpha/beta complex binds representative monopartite NLS (simian virus 40 large T-antigen) and bipartite NLS (nucleoplasmin) with affinities (K-D = 3.5 x 10(-8) m and 4.8 x 10(-8) m, respectively) comparable with those of a truncated importin-alpha lacking the autoinhibitory domain (T-antigen NLS, K-D = 1.7 x 10(-8) m; nucleoplasmin NLS, K-D = 1.4 x 10(-8) m). The autoinhibitory domain (as a separate peptide) binds the truncated importin-alpha, and the crystal structure of the complex resembles the structure of full-length importin-alpha. Our results support the model of regulation of nuclear import mediated by the intrasteric autoregulatory sequence of importin-alpha and provide a quantitative description of the binding and regulatory steps during nuclear import.
Resumo:
Forkhead-associated (FHA) domains are modular protein–protein interaction domains of ~130 amino acids present in numerous signalling proteins. FHA-domain-dependent protein interactions are regulated by phosphorylation of target proteins and FHA domains may be multifunctional phosphopeptide-recognition modules. FHA domains of the budding yeast cell-cycle checkpoint protein kinases Dun1p and Rad53p have been crystallized. Crystals of the Dun1-FHA domain exhibit the symmetry of the space group P6122 or P6522, with unit-cell parameters a = b = 127.3, c = 386.3 Å; diffraction data have been collected to 3.1 Å resolution on a synchrotron source. Crystals of the N-terminal FHA domain (FHA1) of Rad53p diffract to 4.0 Å resolution on a laboratory X-ray source and have Laue-group symmetry 4/mmm, with unit-cell parameters a = b = 61.7, c = 104.3 Å.