4 resultados para fluidity
em University of Queensland eSpace - Australia
Resumo:
Background Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. Scope This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from > 0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. Conclusion For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B deficiency induced sensitivity to photo-oxidative damage in leaf cells. However, specific evidence for each of the mechanisms is still lacking. Impacts of B status on chilling tolerance in crop species have important implications for the management of B supply during sensitive stages of growth, such as early growth after planting and early reproductive development, both of which can coincide with the occurrence of chilling temperatures in the field.
Resumo:
‘Adolescence’ has become increasingly recognised as a nebulous concept. Previous conceptualisations of adolescence have adopted a ‘deficit’ view, regarding teenagers as ‘unfinished’ adults. The deficit view of adolescence is highly problematic in an era where adulthood itself is difficult to define. The terms ‘kidult’ or ‘adultescent’ have emerged to describe adult-age people whose interests and priorities match those of their teenage counterparts. Rather than relying on ‘lock-step’ models of physical, cognitive and social growth put forward by developmental psychology, adolescence can be more usefully defined by looking at the common experiences of people in their teenage years. Common experiences arise at an institutional level; for example, all adolescents are treated as the same by legal and education systems. The transition from primary to secondary schooling is a milestone for all children, exposing them to a new type of educational environment. Shared experiences also arise from generational factors. Today’s adolescents belong to the millennial generation, characterised by technological competence, global perspectives, high susceptibility to media influence, individualisation and rapid interactions. This generation focuses on teamwork, achievement, modesty and good conduct, and has great potential for significant collective accomplishments. These generational factors challenge educators to provide relevant learning experiences for today’s students. Many classrooms still utilise textbook-based pedagogy more suited to previous generations, resulting in disengagement among millennial students. Curriculum content must also be tailored to generational needs. The rapid pace of change, as well as the fluidity of identity created by dissolving geographical and vocational boundaries, mean that the millennial generation will need more than a fixed set of skills and knowledge to enter adulthood. Teachers must enable their students to think like ‘expert novices’, adept at assimilating new concepts in depth and prepared to engage in lifelong learning.
Resumo:
While developments in distributed object computing environments, such as the Common Object Request Broker Architecture (CORBA) [17] and the Telecommunication Intelligent Network Architecture (TINA) [16], have enabled interoperability between domains in large open distributed systems, managing the resources within such systems has become an increasingly complex task. This challenge has been considered for several years within the distributed systems management research community and policy-based management has recently emerged as a promising solution. Large evolving enterprises present a significant challenge for policy-based management partly due to the requirement to support both mutual transparency and individual autonomy between domains [2], but also because the fluidity and complexity of interactions occurring within such environments requires an ability to cope with the coexistence of multiple, potentially inconsistent policies. This paper discusses the need of providing both dynamic (run-time) and static (compile-time) conflict detection and resolution for policies in such systems and builds on our earlier conflict detection work [7, 8] to introduce the methods for conflict resolution in large open distributed systems.