166 resultados para flood forecasting model

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposed a novel model for short term load forecast in the competitive electricity market. The prior electricity demand data are treated as time series. The forecast model is based on wavelet multi-resolution decomposition by autocorrelation shell representation and neural networks (multilayer perceptrons, or MLPs) modeling of wavelet coefficients. To minimize the influence of noisy low level coefficients, we applied the practical Bayesian method Automatic Relevance Determination (ARD) model to choose the size of MLPs, which are then trained to provide forecasts. The individual wavelet domain forecasts are recombined to form the accurate overall forecast. The proposed method is tested using Queensland electricity demand data from the Australian National Electricity Market. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper examines the economic significance of return predictability in Australian equities. In light of considerable model uncertainty, formal model-selection criteria are used to choose a specification for the predictive model. A portfolio-switching strategy is implemented according to model predictions. Relative to a buy-and-hold market investment, the returns to the portfolio-switching strategy are impressive under several model-selection criteria, even after accounting for transaction costs. However, as these findings are not robust across other model-selection criteria examined, it is difficult to conclude that the degree of return predictability is economically significant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sorghum is the main dryland summer crop in NE Australia and a number of agricultural businesses would benefit from an ability to forecast production likelihood at regional scale. In this study we sought to develop a simple agro-climatic modelling approach for predicting shire (statistical local area) sorghum yield. Actual shire yield data, available for the period 1983-1997 from the Australian Bureau of Statistics, were used to train the model. Shire yield was related to a water stress index (SI) that was derived from the agro-climatic model. The model involved a simple fallow and crop water balance that was driven by climate data available at recording stations within each shire. Parameters defining the soil water holding capacity, maximum number of sowings (MXNS) in any year, planting rainfall requirement, and critical period for stress during the crop cycle were optimised as part of the model fitting procedure. Cross-validated correlations (CVR) ranged from 0.5 to 0.9 at shire scale. When aggregated to regional and national scales, 78-84% of the annual variation in sorghum yield was explained. The model was used to examine trends in sorghum productivity and the approach to using it in an operational forecasting system was outlined. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15 minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for short-term traffic prediction. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using peanuts as an example, a generic methodology is presented to forward-estimate regional crop production and associated climatic risks based on phases of the Southern Oscillation Index (SOI). Yield fluctuations caused by a highly variable rainfall environment are of concern to peanut processing and marketing bodies. The industry could profitably use forecasts of likely production to adjust their operations strategically. Significant, physically based lag-relationships exist between an index of ocean/atmosphere El Nino/Southern Oscillation phenomenon and future rainfall in Australia and elsewhere. Combining knowledge of SOI phases in November and December with output from a dynamic simulation model allows the derivation of yield probability distributions based on historic rainfall data. This information is available shortly after planting a crop and at least 3-5 months prior to harvest. The study shows that in years when the November-December SOI phase is positive there is an 80% chance of exceeding average district yields. Conversely, in years when the November-December SOI phase is either negative or rapidly falling there is only a 5% chance of exceeding average district yields, but a 95% chance of below average yields. This information allows the industry to adjust strategically for the expected volume of production. The study shows that simulation models can enhance SOI signals contained in rainfall distributions by discriminating between useful and damaging rainfall events. The methodology can be applied to other industries and regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forecasting category or industry sales is a vital component of a company's planning and control activities. Sales for most mature durable product categories are dominated by replacement purchases. Previous sales models which explicitly incorporate a component of sales due to replacement assume there is an age distribution for replacements of existing units which remains constant over time. However, there is evidence that changes in factors such as product reliability/durability, price, repair costs, scrapping values, styling and economic conditions will result in changes in the mean replacement age of units. This paper develops a model for such time-varying replacement behaviour and empirically tests it in the Australian automotive industry. Both longitudinal census data and the empirical analysis of the replacement sales model confirm that there has been a substantial increase in the average aggregate replacement age for motor vehicles over the past 20 years. Further, much of this variation could be explained by real price increases and a linear temporal trend. Consequently, the time-varying model significantly outperformed previous models both in terms of fitting and forecasting the sales data. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonal climate forecasting offers potential for improving management of crop production risks in the cropping systems of NE Australia. But how is this capability best connected to management practice? Over the past decade, we have pursued participative systems approaches involving simulation-aided discussion with advisers and decision-makers. This has led to the development of discussion support software as a key vehicle for facilitating infusion of forecasting capability into practice. In this paper, we set out the basis of our approach, its implementation and preliminary evaluation. We outline the development of the discussion support software Whopper Cropper, which was designed for, and in close consultation with, public and private advisers. Whopper Cropper consists of a database of simulation output and a graphical user interface to generate analyses of risks associated with crop management options. The charts produced provide conversation pieces for advisers to use with their farmer clients in relation to the significant decisions they face. An example application, detail of the software development process and an initial survey of user needs are presented. We suggest that discussion support software is about moving beyond traditional notions of supply-driven decision support systems. Discussion support software is largely demand-driven and can compliment participatory action research programs by providing cost-effective general delivery of simulation-aided discussions about relevant management actions. The critical role of farm management advisers and dialogue among key players is highlighted. We argue that the discussion support concept, as exemplified by the software tool Whopper Cropper and the group processes surrounding it, provides an effective means to infuse innovations, like seasonal climate forecasting, into farming practice. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a result of their relative concentration towards the respective Atlantic margins, the silicic eruptives of the Parana (Brazil)-Etendeka large igneous province are disproportionately abundant in the Etendeka of Namibia. The NW Etendeka silicic units, dated at similar to132 Ma, occupy the upper stratigraphic levels of the volcanic sequences, restricted to the coastal zone, and comprise three latites and five quartz latites (QL). The large-volume Fria QL is the only low-Ti type. Its trace element and isotopic signatures indicate massive crustal input. The remaining NW Etendeka silicic units are enigmatic high-Ti types, geochemically different from low-Ti types. They exhibit chemical affinities with the temporally overlapping Khumib high-Ti basalt (see Ewart et al. Part 1) and high crystallization temperatures (greater than or equal to980 to 1120degreesC) inferred from augite and pigeonite phenocrysts, both consistent with their evolution from a mafic source. Geochemically, the high-Ti units define three groups, thought genetically related. We test whether these represent independent liquid lines of descent from a common high-Ti mafic parent. Although the recognition of latites reduces the apparent silica gap, difficulty is encountered in fractional crystallization models by the large volumes of two QL units. Numerical modelling does, however, support large-scale open-system fractional crystallization, assimilation of silicic to basaltic materials, and magma mixing, but cannot entirely exclude partial melting processes within the temporally active extensional environment. The fractional crystallization and mixing signatures add to the complexity of these enigmatic and controversial silicic magmas. The existence, however, of temporally and spatially overlapping high-Ti basalts is, in our view, not coincidental and the high-Ti character of the silicic magmas ultimately reflects a mantle signature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bimodal NW Etendeka province is located at the continental end of the Tristan plume trace in coastal Namibia. It comprises a high-Ti (Khumib type) and three low-Ti basalt (Tafelberg, Kuidas and Esmeralda types) suites, with, at stratigraphically higher level, interstratified high-Ti latites (three units) and quartz latites (five units), and one low-Ti quartz latite. Khumib basalts are enriched in high field strength elements and light rare earth elements relative to low-Ti types and exhibit trace element affinities with Tristan da Cunha lavas. The unradiogenic Pb-206/Pb-204 ratios of Khumib basalts are distinctive, most plotting to the left of the 132 Ma Geochron, together with elevated Pb-207/Pb-204 ratios, and Sr-Nd isotopic compositions plotting in the lower Nd-143/Nd-144 part of mantle array (EM1-like). The low-Ti basalts have less coherent trace element patterns and variable, radiogenic initial Sr (similar to0.707-0.717) and Pb isotope compositions, implying crustal contamination. Four samples, however, have less radiogenic Pb and Sr that we suggest approximate their uncontaminated source. All basalt types, but particularly the low-Ti types, contain samples with trace element characteristics (e.g. Nb/Nb-*) suggesting metasediment input, considered source-related. Radiogenic isotope compositions of these samples require long-term isolation of the source in the mantle and depletions (relative to unmodified sediment) in certain elements (e.g. Cs, Pb, U), which are possibly subduction-related. A geodynamic model is proposed in which the emerging Tristan plume entrained subducted material in the Transition Zone region, and further entrained asthenosphere during plume head expansion. Mixing calculations suggest that the main features of the Etendeka basalt types can be explained without sub-continental lithospheric mantle input. Crustal contamination is evident in most low-Ti basalts, but is distinct from the incorporation of a metasedimentary source component at mantle depths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A framework for developing marketing category management decision support systems (DSS) based upon the Bayesian Vector Autoregressive (BVAR) model is extended. Since the BVAR model is vulnerable to permanent and temporary shifts in purchasing patterns over time, a form that can correct for the shifts and still provide the other advantages of the BVAR is a Bayesian Vector Error-Correction Model (BVECM). We present the mechanics of extending the DSS to move from a BVAR model to the BVECM model for the category management problem. Several additional iterative steps are required in the DSS to allow the decision maker to arrive at the best forecast possible. The revised marketing DSS framework and model fitting procedures are described. Validation is conducted on a sample problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The University of Queensland, Australia has developed Fez, a world-leading user-interface and management system for Fedora-based institutional repositories, which bridges the gap between a repository and users. Christiaan Kortekaas, Andrew Bennett and Keith Webster will review this open source software that gives institutions the power to create a comprehensive repository solution without the hassle..