4 resultados para fish disease

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 15% of a population of the cryopelagic nototheniid fish Pagothenia borchgrevinki, found constantly swimming immediately beneath the annual fast ice, in McMudro Sound. Ross Sea, Antarctica, was affected by X-cell gill disease. This disease affected blood flow through the gill lamellae, and this in turn affected oxygen uptake. Exercise caused increases in heart rate and ventral aortic blood pressure. Heart rate increased from 15.1 +/- 1.55 to 23.1 +/- 0.93 beats min(-1) in healthy fish, with a similar increase from 15.1 +/- 1.55 to 23.1 +/- 0.93 beats min(-1) in healthy fish, with a similar increase (to 24.6 +/- 0.26 beats min(-1)) in X-cell-affected animals. In healthy fish, pressures rose with exercise (from 2.72 +/- 0.11 to 3.75 +/- 0.19 kPa) and then rapidly returned to resting levels during recovery. In X-cell fish pressures rose during exercise, but then continued to rise, to reach a high of 4.18 +/- 0.13 kPa, close to the predicted maximum pressure able to be generated by these hearts. Recovery was rapid in healthy fish, but was prolonged in diseased animals. As they are constantly swimming, there is the potential that X-cell-affected fish suffer from chronic hypertension. (C) 2003 The Fisheries Society of the British Isles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the austral summer of 2001/2002, a coral epizootic occurred almost simultaneously with a bleaching event on the fringing reefs of Magnetic Island (Great Barrier Reef region), Australia. This resulted in a 3- to 4-fold increase in the mean percentage of partial mortality rate in a population of the hard coral Montipora aequituberculata. The putative disease state, ‘atramentous necrosis’, was observed on both bleached and normally-pigmented M. aequituberculata, and presented blackened lesions that spread within days across the colony surface and throughout the population. Diseased portions of the corals were only visible for 3 to 4 wk, with diseased tissues becoming covered in sediment and algae, which rapidly obscured evidence of the outbreak. Diseased colonies were again observed in the summer of 2002/2003 after being absent over the 2002 winter. Analysis of when diseased and bleached corals were first observed, and when and where the mortality occurred on individual colonies, indicated virtually all the mortality over the summer could be attributed to the disease and not to the bleaching. Fluorescence in situ hybridisation (FISH) techniques and cloning, and analysis of the 16S rRNA genes from diseased coral tissue, identified a mixed microbial assemblage in the diseased tissues particularly within the Alphaproteobacteria, Firmicutes and Bacteroidetes. While it is not possible in this study to distinguish between a disease-causing microbial community versus secondary invaders, the bacterial 16S rDNA sequences identified within the blackened lesions demonstrated high similarity to sequences from black band disease and white plague infected corals, suggesting either common aetiological agents or development of a bacterial community that is specific to degrading coral tissues. Temperature-induced coral disease outbreaks, with the potential for elevated levels of mortality, may represent an added problem for corals during the warmer summer months and an added dimension to predicted increases in water temperature from climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultraviolet (UV) absorbance of the mucus of a Great Barrier Reef damselfish Pomacentrus amboinensis was investigated with regard to ontogeny and time spent in captivity. The UV absorbance of P. amboinensis mucus increased with fish size and decreased with time spent in captivity. The wavelength of maximum absorbance of the mucus did not change with fish size, but shifted towards shorter wavelengths with increasing time spent in captivity. The UV absorbance of the mucus of fish with 'fin rot' was compared to that of similar healthy individuals, and a significant decrease in UV absorbance of unhealthy fish mucus was detected; no wavelength shifting occurred. Pomacentrus amboinensis appears to sequester mycosporine-like amino acids from the diet in order to protect epithelial tissues from UV damage, and decreases in UV absorbance in captive fish were probably due to insufficient dietary availability.