3 resultados para finite abelian p-group
em University of Queensland eSpace - Australia
Resumo:
In this paper we focus on the existence of 2-critical sets in the latin square corresponding to the elementary abelian 2-group of order 2(n). It has been shown by Stinson and van Rees that this latin square contains a 2-critical set of volume 4(n) - 3(n). We provide constructions for 2-critical sets containing 4(n) - 3(n) + 1 - (2(k-1) + 2(m-1) + 2(n-(k+m+1))) entries, where 1 less than or equal to k less than or equal to n and 1 less than or equal to m less than or equal to n - k. That is, we construct 2-critical sets for certain values less than 4(n) - 3(n) + 1 - 3 (.) 2([n /3]-1). The results raise the interesting question of whether, for the given latin square, it is possible to construct 2-critical sets of volume m, where 4(n) - 3(n) + 1 - 3 (.) 2([n/3]-1) < m < 4(n) - 3(n).
Resumo:
This article first summarizes some available experimental results on the frictional behaviour of contact interfaces, and briefly recalls typical frictional experiments and relationships, which are applicable for rock mechanics, and then a unified description is obtained to describe the entire frictional behaviour. It is formulated based on the experimental results and applied with a stick and slip decomposition algorithm to describe the stick-slip instability phenomena, which can describe the effects observed in rock experiments without using the so-called state variable, thus avoiding related numerical difficulties. This has been implemented to our finite element code, which uses the node-to-point contact element strategy proposed by the authors to handle the frictional contact between multiple finite-deformation bodies with stick and finite frictional slip, and applied here to simulate the frictional behaviour of rocks to show its usefulness and efficiency.
Resumo:
Strain localisation is a widespread phenomenon often observed in shear and compressive loading of geomaterials, for example, the fault gouge. It is believed that the main mechanisms of strain localisation are strain softening and mismatch between dilatancy and pressure sensitivity. Observations show that gouge deformation is accompanied by considerable rotations of grains. In our previous work as a model for gouge material, we proposed a continuum description for an assembly of particles of equal radius in which the particle rotation is treated as an independent degree of freedom. We showed that there exist critical values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-surface layers of the fault, even in the absence of inelasticity. Here, we generalise the model to the case of finite deformations characteristic for the gouge deformation. We derive objective constitutive relationships relating the Jaumann rates of stress and moment stress to the relative strain and curvature rates, respectively. The model suggests that the pattern of localisation remains the same as in the linear case. However, the presence of the Jaumann terms leads to the emergence of non-zero normal stresses acting along and perpendicular to the shear layer (with zero hydrostatic pressure), and localised along the mid-line of the gouge; these stress components are absent in the linear model of simple shear. These additional normal stresses, albeit small, cause a change in the direction in which the maximal normal stresses act and in which en-echelon fracturing is formed.