2 resultados para financial time series prediction
em University of Queensland eSpace - Australia
Resumo:
Vector error-correction models (VECMs) have become increasingly important in their application to financial markets. Standard full-order VECM models assume non-zero entries in all their coefficient matrices. However, applications of VECM models to financial market data have revealed that zero entries are often a necessary part of efficient modelling. In such cases, the use of full-order VECM models may lead to incorrect inferences. Specifically, if indirect causality or Granger non-causality exists among the variables, the use of over-parameterised full-order VECM models may weaken the power of statistical inference. In this paper, it is argued that the zero–non-zero (ZNZ) patterned VECM is a more straightforward and effective means of testing for both indirect causality and Granger non-causality. For a ZNZ patterned VECM framework for time series of integrated order two, we provide a new algorithm to select cointegrating and loading vectors that can contain zero entries. Two case studies are used to demonstrate the usefulness of the algorithm in tests of purchasing power parity and a three-variable system involving the stock market.
Resumo:
In this paper we develop an evolutionary kernel-based time update algorithm to recursively estimate subset discrete lag models (including fullorder models) with a forgetting factor and a constant term, using the exactwindowed case. The algorithm applies to causality detection when the true relationship occurs with a continuous or a random delay. We then demonstrate the use of the proposed evolutionary algorithm to study the monthly mutual fund data, which come from the 'CRSP Survivor-bias free US Mutual Fund Database'. The results show that the NAV is an influential player on the international stage of global bond and stock markets.