118 resultados para field homogeneity
em University of Queensland eSpace - Australia
Resumo:
A Combined Genetic Algorithm and Method of Moments design methods is presented for the design of unusual near-field antennas for use in Magnetic Resonance Imaging systems. The method is successfully applied to the design of an asymmetric coil structure for use at 190MHz and demonstrates excellent radiofrequency field homogeneity.
Resumo:
In this paper, numerical simulations are used in an attempt to find optimal Source profiles for high frequency radiofrequency (RF) volume coils. Biologically loaded, shielded/unshielded circular and elliptical birdcage coils operating at 170 MHz, 300 MHz and 470 MHz are modelled using the FDTD method for both 2D and 3D cases. Taking advantage of the fact that some aspects of the electromagnetic system are linear, two approaches have been proposed for the determination of the drives for individual elements in the RF resonator. The first method is an iterative optimization technique with a kernel for the evaluation of RF fields inside an imaging plane of a human head model using pre-characterized sensitivity profiles of the individual rungs of a resonator; the second method is a regularization-based technique. In the second approach, a sensitivity matrix is explicitly constructed and a regularization procedure is employed to solve the ill-posed problem. Test simulations show that both methods can improve the B-1-field homogeneity in both focused and non-focused scenarios. While the regularization-based method is more efficient, the first optimization method is more flexible as it can take into account other issues such as controlling SAR or reshaping the resonator structures. It is hoped that these schemes and their extensions will be useful for the determination of multi-element RF drives in a variety of applications.
Resumo:
Radio-frequency ( RF) coils are designed such that they induce homogeneous magnetic fields within some region of interest within a magnetic resonance imaging ( MRI) scanner. Loading the scanner with a patient disrupts the homogeneity of these fields and can lead to a considerable degradation of the quality of the acquired image. In this paper, an inverse method is presented for designing RF coils, in which the presence of a load ( patient) within the MRI scanner is accounted for in the model. To approximate the finite length of the coil, a Fourier series expansion is considered for the coil current density and for the induced fields. Regularization is used to solve this ill-conditioned inverse problem for the unknown Fourier coefficients. That is, the error between the induced and homogeneous target fields is minimized along with an additional constraint, chosen in this paper to represent the curvature of the coil windings. Smooth winding patterns are obtained for both unloaded and loaded coils. RF fields with a high level of homogeneity are obtained in the unloaded case and a limit to the level of homogeneity attainable is observed in the loaded case.
Resumo:
Conducting dielectric samples are often used in high-resolution experiments at high held. It is shown that significant amplitude and phase distortions of the RF magnetic field may result from perturbations caused by such samples. Theoretical analyses demonstrate the spatial variation of the RF field amplitude and phase across the sample, and comparisons of the effect are made for a variety of sample properties and operating field strengths. Although the effect is highly nonlinear, it tends to increase with increasing field strength, permittivity, conductivity, and sample size. There are cases, however, in which increasing the conductivity of the sample improves the homogeneity of the amplitude of the RF field across the sample at the expense of distorted RF phase. It is important that the perturbation effects be calculated for the experimental conditions used, as they have the potential to reduce the signal-to-noise ratio of NMR experiments and may increase the generation of spurious coherences. The effect of RF-coil geometry on the coherences is also modeled, with the use of homogeneous resonators such as the birdcage design being preferred, Recommendations are made concerning methods of reducing sample-induced perturbations. Experimental high-field imaging and high-resolution studies demonstrate the effect. (C) 1997 Academic Press.
Resumo:
Magnetic resonance imaging (MRI) magnets have very stringent constraints on the homogeneity of the static magnetic field that they generate over desired imaging regions. The magnet system also preferably generates very little stray field external to its structure, so that ease of siting and safety are assured. This work concentrates on deriving, means of rapidly computing the effect of 'cold' and 'warm' ferromagnetic material in or around the superconducting magnet system, so as to facilitate the automated design of hybrid material MR magnets. A complete scheme for the direct calculation of the spherical harmonics of the magnetic field generated by a circular ring of ferromagnetic material is derived under the conditions of arbitrary external magnetizing fields. The magnetic field produced by the superconducting coils in the system is computed using previously developed methods. The final, hybrid algorithm is fast enough for use in large-scale optimization methods. The resultant fields from a practical example of a 4 T, clinical MRI magnet containing both superconducting coils and magnetic material are presented.
Resumo:
Previous research indicates that people who are highly identified with their groups tend to remain committed to them under threat. This study examines the generalizability, of this effect to (a) a real-life context involving the perception that others view the ingroup (Australians) as intolerant of minorities and (b) various dimensions of social identification. The sample comprised 213 respondents to a random mail survey. Perceived threat was inversely related to self-stereotyping (i.e. perceptions of self-ingroup similarity), but only for individuals with weak subjective ties to other group members. Threat perceptions were also predictive of enhanced judgments of within-group variability on threat-relevant dimensions, particularly for individuals with weaker ingroup ties. Various strategies for coping with a threatened social identity are linked to different facets of social identification.
Resumo:
Age is a critical determinant of an adult female mosquito's ability to transmit a range of human pathogens. Despite its central importance, relatively few methods exist with which to accurately determine chronological age of field-caught mosquitoes. This fact is a major constraint on our ability to fully understand the relative importance of vector longevity to disease transmission in different ecological contexts. It also limits our ability to evaluate novel disease control strategies that specifically target mosquito longevity. We report the development of a transcriptional profiling approach to determine age of adult female Aedes aegypti under field conditions. We demonstrate that this approach surpasses current cuticular hydrocarbon methods for both accuracy of predicted age as well as the upper limits at which age can be reliably predicted. The method is based on genes that display age-dependent expression in a range of dipteran insects and, as such, is likely to be broadly applicable to other disease vectors.
Resumo:
The aim of this study was to examine the reliability and validity of field tests for assessing physical function in mid-aged and young-old people (55–70 y). Tests were selected that required minimal space and equipment and could be implemented in multiple field settings such as a general practitioner's office. Nineteen participants completed 2 field and 1 laboratory testing sessions. Intra-class correlations showed good reliability for the tests of upper body strength (lift and reach, R= .66), lower body strength (sit to stand, R= .80) and functional capacity (Canadian Step Test, R= .92), but not for leg power (single timed chair rise, R= .28). There was also good reliability for the balance test during 3 stances: parallel (94.7% agreement), semi-tandem (73.7%), and tandem (52.6%). Comparison of field test results with objective laboratory measures found good validity for the sit to stand (cf 1RM leg press, Pearson r= .68, p< .05), and for the step test (cf PWC140, r= −.60, p< .001), but not for the lift and reach (cf 1RM bench press, r= .43, p> .05), balance (r= −.13, −.18, .23) and rate of force development tests (r= −.28). It was concluded that the lower body strength and cardiovascular function tests were appropriate for use in field settings with mid-aged and young-old adults.
Resumo:
The Asian tiger mosquito, Aedes albopictus (Skuse), is a known vector of dengue in South America and Southeast Asia. It is naturally superinfected with two strains of Wolbachia endosymbiont that are able to induce cytoplasmic incompatibility (CI). In this paper, we report the strength of CI expression in crosses involving field-caught males. CI expression was found to be very strong in all crosses between field males and laboratory-reared uninfected or wAlbA infected young females. In addition, crossing experiments with laboratory colonies showed that aged super- infected males could express strong CI when mated with young uninfected or wAlbA infected females. These results provide additional evidence that the CI properties of Wolbachia infecting Aedes albopictus are well suited for applied strategies that seek to utilise Wolbachia for host population modification.
Resumo:
The endosymbiotic bacteria in the genus Wolbachia have been proposed as a potential candidate to deliver pathogen-blocking genes into natural populations of medically important insects. The successful application of Wolbachia in insect vector control depends on the ability of the agent to successfully invade and maintain itself at high frequency under field conditions. Here, we evaluated the prevalence of Wolbachia infections in a field population of the Wolbachia-superinfected mosquito Aedes albopictus. A field prevalence of 100% (n = 1,016) was found in a single population in eastern Thailand via polymerase chain reaction (PCR) testing of Wolbachia both from individual parent females and their corresponding F1 offspring. This is the first report of accurate Wolbachia prevalence in a field population of an insect disease vector. The prevalence of superinfection was estimated to be 99.41%. All single-infected individual mosquitoes (n = 6) were found to harbor group A Wolbachia. For this particular population, none was found to be single-infected with group B Wolbachia. Our results also show that PCR testing of field materials alone without checking F1 offspring overestimated the natural prevalence of single infection. Thus, the confirmation of infection status by means of F1 offspring was critical to the accurate estimates of Wolbachia prevalence under field conditions.
Resumo:
Genome sizes of six different Wolbachia strains from insect and nematode hosts have been determined by pulsed-field gel electrophoresis of purified DNA both before and after digestion with rare-cutting restriction endonucleases. Enzymes SmaI, ApaI, AscI, and FseI cleaved the studied Wolbachia strains at a small number of sites and were used for the determination of the genome sizes of wMelPop, wMel, and wMelCS (each 1.36 Mb), wRi (1.66 Mb), wBma (1.1 Mb), and wDim (0.95 Mb). The Wolbachia genomes studied were all much smaller than the genomes of free-living bacteria such as Escherichia coli (4.7 Mb), as is typical for obligate intracellular bacteria. There was considerable genome size variability among Wolbachia strains, especially between the more parasitic A group Wolbachia infections of insects and the mutualistic C and D group infections of nematodes. The studies described here found no evidence for extrachromosomal plasmid DNA in any of the strains examined. They also indicated that the Wolbachia genome is circular.
Resumo:
Our AUTC Biotechnology study (Phases 1 and 2) identified a range of areas that could benefit from a common approach by universities nationally. A national network of biotechnology educators needs to be solidified through more regular communication, biennial meetings, and development of methods for sharing effective teaching practices and industry placement strategies, for example. Our aims in this proposed study are to: a. Revisit the state of undergraduate biotechnology degree programs nationally to determine their rate of change in content, growth or shrinkage in student numbers (as the biotech industry has had its ups and downs in recent years), and sustainability within their institutions in light of career movements of key personnel, tightening budgets, and governmental funding priorities. b. Explore the feasibility of a range of initiatives to benefit university biotechnology education to determine factors such as how practical each one is, how much buy-in could be gained from potentially participating universities and industry counterparts, and how sustainable such efforts are. One of many such initiatives arising in our AUTC Biotech study was a national register of industry placements for final-year students. c. During scoping and feasibility study, to involve our colleagues who are teaching in biotechnology – and contributing disciplines. Their involvement is meant to yield not only meaningful insight into how to strengthen biotechnology teaching and learning but also to generate ‘buy-in’ on any initiatives that result from this effort.
Resumo:
This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.