11 resultados para fenolo alchilazione MgO MgAlO carbonati organici

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of MgA1 layered double hydroxide (LDH) from physically mixed MgO and Al2O3 oxides upon hydrothermal treatment has been extensively investigated, and a formation mechanism has been proposed. We observed that the formation of LDH from the oxide mixture occurs upon heating at 110 degreesC. In general, LDH is the major component while the minor phases are mainly determined by the initial pH of the oxide suspension as well as the MgO/Al2O3 ratio. The neutrality in the initial suspension results in a minor Mg(OH)(2) as the impure phase, while the alkalinity in the suspension keeps some MgO unreacted throughout the whole hydrothermal treatment. We suggest that MgO and Al2O3 be hydrated into Mg(OH)(2) and Al(OH)(3), respectively, in the initial stage for all samples. We further Suggest that in the neutral condition Mg(OH)2 be quickly dissociated to Mg2+ and OH- which then deposit on the surface of Al(OH)(3)/Al2O3 to form a M-Al pre-LDH material. Al(OH)(4)(-), ionized from Al(OH)(3) in the basic solution, deposits on the surface of Mg(OH)(2)/MgO to result in a similar MgAl pre-LDH material. Such a pre-LDH material is then well crystallized upon continuous heating via the diffusion of metal ions in the solid lattice. Such a dissociation-deposition-diffusion mechanism via two pathways has been supported by the phase composition, morphological features of crystallites, and [Mg]/[Al] ratios on the crystallite surface. and presumably applied to the general formation of LDHs with various synthetic methods. Such as coprecipitation, homogeneous preparation, and reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquidus isotherms and phase equilibria have been determined experimentally for a pseudo-ternary section of the form MnO-(CaO+MgO)-(SiO2+Al2O3) with a fixed Al-2,O-3,/SiO2, weight ratio of 0.17 and MgO/CaO weight ratio of 0.17 for temperatures in the range 1473-1673 K. The primary phase fields present for the section investigated include manganosite (Mn,Mg,Ca)O; dicalcium silicate alpha-2(Ca,Mg,Mn)O (.) SiO2; merwinite 3CaO(.) ((Mg,Mn)O.2SiO(2); wollastonite [(Ca,Mg,Mn)(OSiO2)-Si-.]; ;tephroite [2(Mn,Mg)O.SiO2]; rhodonite [(Mn,Mg)O. diopside [(CaO,MgO,MnO,Al2O3)(SiO2)-Si-.]; tridymite (SiO2), SiO2] and melilite [2CaO (.) (MgO,MnO,Al2O3).2(SiO2,Al2O3)]. The liquidus temperatures relevant to ferro-manganese and silico-manganese smelting slags have been determined. The liquiclus temperature is shown to be principally dependent on the modified basicity weight ratio (CaO+Mgo)/(SiO2+Al2O3) at low MnO concentrations, and dependent on the mole ratio (CaO+ MgO+MnO)/(SiO2+Al2O3) at higher MnO concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquidus temperatures and phase equilibria have been determined in the olivine primary phase field of the MgO-FeO-SiO2-Al2O3 system. Liquidus isotherms have been determined in the temperature range from 1748 to 1873K. The results are presented in the form of pseudo-ternary sections of the MgO-FeO-SiO2 with 2 and 3wt% Al2O3 in the liquid. The study enables the liquidus to be described for a range of SiO2/MgO ratios. It was found that liquidus temperatures in the olivine primary phase field decrease with the addition of Al2O3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of alumina and chromite impurities on the liquidus temperatures in the cristobalite/tridymite (SiO2) primary phase fields in the MgO-FeO-SiO, system in equilibrium with metallic iron have been investigated experimentally. Using high temperature equilibration and quenching followed by electron probe X-ray microanalysis (EPMA), liquiclus isotherms have been determined in the temperatures range 1 673 to 1 898 K. The results are presented in the form of pseudo-ternary sections of the MgO-FeO-SiO, system at 2, 3 and 5 wt% Al2O3, 2 wt% Cr2O3, and 2 wt% Cr2O3+2 wt% Al2O3. The study enables the liquidus to be described for a range of SiO2/MgO and MgO/FeO ratios. It was found that liquiclus temperatures in the cristobalite and tridymite primary phase fields, decrease significantly with the addition of Al2O3 and Cr2O3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgO-SiO2 system has been developed. The model links the slag viscosities to the internal structures of the melts through the concentrations of various Si0.5O, Me2/nn+O and Me1/nn+Si0.25O viscous flow structural units. The concentrations of these structural units are derived from a quasi-chemical thermodynamic model of the system. The model described in this series of papers enables the viscosities of liquid slags to be predicted within experimental uncertainties over the whole range of temperatures and compositions in the Al2O3 CaOMgO-SiO2 system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A structurally-based quasi-chemical viscosity model has been developed for the Al2O3 CaO-'FeO'-MgO-SiO2 system. The model links the slag viscosity to the internal structure of melts through the concentrations of various anion/cation Si0.5O, Me2/nn+O and Me1/nn+Si0.25O viscous flow structural units. The concentrations of structural units are derived from the quasi-chemical thermodynamic model. The focus of the work described in the present paper is the analysis of experimental data and the viscosity models for fully liquid slags in the Al2O3-CaO-MgO, Al2O3 MgO-SiO2 and CaO-MgO-SiO2 systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgOSiO2 system has been developed. The focus of the work described in the present paper is the analysis of the experimental data and viscosity models in the quaternary system Al2O3 CaO-MgO-SiO2 and its subsystems. A review of the experimental data, viscometry methods used and viscosity models available in the Al2O3 CaO-MgO-SiO2 and its sub-systems is reported. The quasi-chemical viscosity model is shown to provide good agreement between experimental data and predictions over the whole compositional range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase equilibria have been determined experimentally for pseudo-ternary sections of the form “MnO”- (CaO+MgO)-(SiO2+Al2O3) with a fixed Al2O3/SiO2 weight ratio of 0.17 and MgO/CaO weight ratios of 0.25 and 0.17 respectively for temperatures in the range 1473-1673 K. The primary phase fields present for the MgO/CaO weight ratio of 0.17 include manganosite (Mn,Mg,Ca)O; dicalcium silicate α-2(Ca,Mg,Mn)O·SiO2; merwinite 3CaO⋅(Mg,Mn)O⋅2SiO2; wollastonite [(Ca,Mg,Mn)O·SiO2]; diopside [(CaO,MgO,MnO,Al2O3)·SiO2]; tridymite (SiO2); tephroite [2(Mn,Mg)O·SiO2]; rhodonite [(Mn,Mg)O·SiO2] and melilite [2CaO·(MgO,MnO,Al2O3)·2(SiO2,Al2O3)]. For the section with MgO/CaO weight ratio of 0.25 the anorthite phase (CaO⋅Al2O3⋅2SiO2) is also present. The liquidus temperatures of ferro- and silico-manganese smelting slags have been determined. The liquidus temperatures at low MnO concentrations are shown to be principally dependent on the modified basicity weight ratio (CaO+MgO)/(SiO2+Al2O3).