8 resultados para feature inspection method

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural similarity among proteins is reflected in the distribution of hydropathicity along the amino acids in the protein sequence. Similarities in the hydropathy distributions are obvious for homologous proteins within a protein family. They also were observed for proteins with related structures, even when sequence similarities were undetectable. Here we present a novel method that employs the hydropathy distribution in proteins for identification of (sub)families in a set of (homologous) proteins. We represent proteins as points in a generalized hydropathy space, represented by vectors of specifically defined features. The features are derived from hydropathy of the individual amino acids. Projection of this space onto principal axes reveals groups of proteins with related hydropathy distributions. The groups identified correspond well to families of structurally and functionally related proteins. We found that this method accurately identifies protein families in a set of proteins, or subfamilies in a set of homologous proteins. Our results show that protein families can be identified by the analysis of hydropathy distribution, without the need for sequence alignment. (C) 2005 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With mixed feature data, problems are induced in modeling the gating network of normalized Gaussian (NG) networks as the assumption of multivariate Gaussian becomes invalid. In this paper, we propose an independence model to handle mixed feature data within the framework of NG networks. The method is illustrated using a real example of breast cancer data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a method for designing circular, shielded biplanar coils that can generate any desired field. A particular feature of these coils is that the target field may be located asymmetrically within the coil. A transverse component of the magnetic field produced by the coil is made to match a prescribed target field over the surfaces of two concentric spheres (the diameter of spherical volume) that define the target field location. The paper shows winding patterns and fields for several gradient and shim coils. It examines the effect that the finite coil size has on the winding patterns, using a Fourier-transform calculation for comparison.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the English literature, facial approximation methods have been commonly classified into three types: Russian, American, or Combination. These categorizations are based on the protocols used, for example, whether methods use average soft-tissue depths (American methods) or require face muscle construction (Russian methods). However, literature searches outside the usual realm of English publications reveal key papers that demonstrate that the Russian category above has been founded on distorted views. In reality, Russian methods are based on limited face muscle construction, with heavy reliance on modified average soft-tissue depths. A closer inspection of the American method also reveals inconsistencies with the recognized classification scheme. This investigation thus demonstrates that all major methods of facial approximation depend on both face anatomy and average soft-tissue depths, rendering common method classification schemes redundant. The best way forward appears to be for practitioners to describe the methods they use (including the weight each one gives to average soft-tissue depths and deep face tissue construction) without placing them in any categorical classificatory group or giving them an ambiguous name. The state of this situation may need to be reviewed in the future in light of new research results and paradigms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary form only given. The Java programming language supports concurrency. Concurrent programs are harder to verify than their sequential counterparts due to their inherent nondeterminism and a number of specific concurrency problems such as interference and deadlock. In previous work, we proposed a method for verifying concurrent Java components based on a mix of code inspection, static analysis tools, and the ConAn testing tool. The method was derived from an analysis of concurrency failures in Java components, but was not applied in practice. In this paper, we explore the method by applying it to an implementation of the well-known readers-writers problem and a number of mutants of that implementation. We only apply it to a single, well-known example, and so we do not attempt to draw any general conclusions about the applicability or effectiveness of the method. However, the exploration does point out several strengths and weaknesses in the method, which enable us to fine-tune the method before we carry out a more formal evaluation on other, more realistic components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite element analysis (FEA) of nonlinear problems in solid mechanics is a time consuming process, but it can deal rigorously with the problems of both geometric, contact and material nonlinearity that occur in roll forming. The simulation time limits the application of nonlinear FEA to these problems in industrial practice, so that most applications of nonlinear FEA are in theoretical studies and engineering consulting or troubleshooting. Instead, quick methods based on a global assumption of the deformed shape have been used by the roll-forming industry. These approaches are of limited accuracy. This paper proposes a new form-finding method - a relaxation method to solve the nonlinear problem of predicting the deformed shape due to plastic deformation in roll forming. This method involves applying a small perturbation to each discrete node in order to update the local displacement field, while minimizing plastic work. This is iteratively applied to update the positions of all nodes. As the method assumes a local displacement field, the strain and stress components at each node are calculated explicitly. Continued perturbation of nodes leads to optimisation of the displacement field. Another important feature of this paper is a new approach to consideration of strain history. For a stable and continuous process such as rolling and roll forming, the strain history of a point is represented spatially by the states at a row of nodes leading in the direction of rolling to the current one. Therefore the increment of the strain components and the work-increment of a point can be found without moving the object forward. Using this method we can find the solution for rolling or roll forming in just one step. This method is expected to be faster than commercial finite element packages by eliminating repeated solution of large sets of simultaneous equations and the need to update boundary conditions that represent the rolls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software simulation models are computer programs that need to be verified and debugged like any other software. In previous work, a method for error isolation in simulation models has been proposed. The method relies on a set of feature matrices that can be used to determine which part of the model implementation is responsible for deviations in the output of the model. Currrently these feature matrices have to be generated by hand from the model implementation, which is a tedious and error-prone task. In this paper, a method based on mutation analysis, as well as prototype tool support for the verification of the manually generated feature matrices is presented. The application of the method and tool to a model for wastewater treatment shows that the feature matrices can be verified effectively using a minimal number of mutants.