4 resultados para fatty bodies
em University of Queensland eSpace - Australia
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cav(DGV)) to study LB formation and to examine its effect on LB function. We now show that the cav(DGV) mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.
Resumo:
In the present study we identify inosine-5' monophosphate dehydrogenase (IMPDH), a key enzyme in de novo guanine nucleotide biosynthesis, as a novel lipid body-associated protein. To identify new targets of insulin we performed a comprehensive 2-DE analysis of P-32-labelled proteins isolated from 3T3-L1 adipocytes (Hill et al. J Biol Chem 2000; 275: 24313-24320). IMPDH was identified by liquid chromatography/tandem mass spectrometry as a protein which was phosphorylated in a phosphatidylinositol (PI) 3-kinase-dependent manner upon insulin treatment. Although insulin had no significant effect on IMPDH activity, we observed translocation of IMPDH to lipid bodies following insulin treatment. Induction of lipid body formation with oleic acid promoted dramatic redistribution of IMPDH to lipid bodies, which appeared to be in contact with the endoplasmic reticulum, the site of lipid body synthesis and recycling. Inhibition of PI 3-kinase blocked insulin- and oleate-induced translocation of IMPDH and reduced oleate-induced lipid accumulation. However, we found no evidence of oleate-induced IMPDH phosphorylation, suggesting phosphorylation and translocation may not be coupled events. These data support a role for IMPDH in the dynamic regulation of lipid bodies and fatty acid metabolism and regulation of its activity by subcellular redistribution in response to extracellular factors that modify lipid metabolism.
Resumo:
Objective:. There is evidence from in vitro studies that fatty acids can inhibit glucose uptake in liver. However, it is uncertain whether this happens in vivo when the liver is exposed to high levels of glucose and insulin, in combination with fatty acids, after a mixed meal. This study determined the effects of a combination of fatty acids and insulin on glucokinase (GK) activity and glycolysis in primary rat hepatocytes. Methods: Hepatocytes were cultured with 15 mM glucose and 2 or 10 nM insulin in combination with the fatty acids palmitate, oleate, linoleate, eicosapentaenoic acid, or docosahexaenoic acid. Total GK activity and the proportion of GK in the,active, unbound state were measured to determine the effect of fatty acid on the activity and cellular localization of GK. Glucose phosphorylation and glycolysis were measured in intact cells. Lactate and pyruvate synthesis and the accumulation of ketone bodies were also estimated. Results: Palmitate and eicosapentaenoic acid lowered total GK activity in the presence of 2 nM insulin, but not with 10 nM insulin. In contrast, oleate, linoleate, and docosahexaenoic acid did not alter GK activity. None of the fatty acids tested inhibited glucose phosphorylation or glycolysis in intact rat hepatocytes. In addition, GK activity was unaffected by insulin concentration. Conclusion: Some fatty acids can act to inhibit GK activity in primary hepatocytes. However, there was no,evidence that this decrease in GK activity impaired glucose phosphorylation or glycolysis. Glucose and high concentrations of insulin, which promote glucose uptake, appear to counteract any inhibitory action of fatty acids. Therefore, the presence of fatty acids in a normal mixed meal is likely to have little effect on the capacity of the liver to take up, phosphorylate, and oxidize glucose. (C) 2006 Elsevier Inc. All rights reserved.