5 resultados para external high-voltage electric field

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the quantum tunneling theory, we investigate the spin-dependent transport properties of the ferromagnetic metal/Schottky barrier/semiconductor heterojunction under the influence of an external electric field. It is shown that increasing the electric field, similar to increasing the electron density in semiconductor, will result in a slight enhancement of spin injection in tunneling regime, and this enhancement is significantly weakened when the tunneling Schottky barrier becomes stronger. Temperature effect on spin injection is also discussed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of auxiliary calcium channel subunits on the expression and functional properties of high-voltage activated (HVA) calcium channels have been studied extensively in the Xenopus oocyte expression system, but are less completely characterized in a mammalian cellular environment. Here, we provide the first systematic analysis of the effects of calcium channel beta and alpha(2)-delta subunits on expression levels and biophysical properties of three different types (Ca(v)1.2, Ca(v)2.1 and Ca(v)2.3) of HVA calcium channels expressed in tsA-201 cells. Our data show that Ca(v)1.2 and Ca(v)2.3 channels yield significant barium current in the absence of any auxiliary subunits. Although calcium channel beta subunits were in principle capable of increasing whole cell conductance, this effect was dependent on the type of calcium channel alpha(1) subunit, and beta(3) subunits altogether failed to enhance current amplitude irrespective of channel subtype. Moreover, the alpha(2)-delta subunit alone is capable of increasing current amplitude of each channel type examined, and at least for members of the Ca(v)2 channel family, appears to act synergistically with beta subunits. In general agreement with previous studies, channel activation and inactivation gating was regulated both by beta and by alpha(2)-delta subunits. However, whereas pronounced regulation of inactivation characteristics was seen with the majority of the auxiliary subunits, effects on voltage dependence of activation were only small (< 5 mV). Overall, through a systematic approach, we have elucidated a previously underestimated role of the alpha(2)-delta(1) subunit with regard to current enhancement and kinetics. Moreover, the effects of each auxiliary subunit on whole cell conductance and channel gating appear to be specifically tailored to subsets of calcium channel subtypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 The effect of 5-HT and related indolealkylamines on heteromeric recombinant NMDA receptors expressed in Xenopus oocytes was investigated using the two-electrode voltage-clamp recording technique. 2 In the absence of external Mg2+ ions, 5-HT inhibited NMDA receptor-mediated currents in a concentration-dependent manner. The inhibitory effect of 5-HT was independent of the NR1a and NR2 subunit combination. 3 The inhibition of glutamate-evoked currents by 5-HT was use- and voltage-dependent. The voltage sensitivity of inhibition for NR1a+NR2 subunit combinations by 5-HT was similar, exhibiting an e-fold change per similar to20 mV, indicating that 5-HT binds to a site deep within the membrane electric field. 4 The inhibition of the open NMDA receptor by external Mg2+ and 5-HT was not additive, suggesting competition between Mg2+ and 5-HT for a binding site in the NMDA receptor channel. The concentration-dependence curves for 5-HT and 5-methoxytryptamine (5-MeOT) inhibition of NMDA receptor-mediated currents are shifted to the right in the presence of external Mg2+. 5 The related indolealkylamines inhibited glutamate-evoked currents with the following order of inhibitory potency: 5-MeOT = 5-methyltryptamine > tryptamine > 7-methyltryptamine > 5-HTmuch greater than tryptophan melatonin. 6 Taken together, these data suggest that 5-HT and related compounds can attenuate glutamate-mediated excitatory synaptic responses and may provide a basis for drug treatment of excitoxic neurodegeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: Voltage-dependent block by Mg2+ is a cardinal feature of NMDA receptors which acts as a coincidence detector to prevent the receptor from over-activation. Inhibition of NMDA receptor currents by 5-hydroxytryptamine (5-HT) indicated that 5-HT, similar to Mg2+, binds within the membrane electric field. In the present study, we assessed whether point mutations of critical asparagine residues located within the selectivity filter of NR1 and NR2A subunits of NMDA receptor-channel affect voltage-dependent block by 5-HT. Experimental approach: The mode of action of 5-HT and Mg2+ on wild-type and mutated NMDA receptor-channels expressed in Xenopus oocytes was investigated using the two-electrode voltage clamp recording technique. Key results: The mutation within the NR1 subunit NR1(N0S or N0Q) strongly reduced the voltage dependent block by 5-HT and increased the IC50. The corresponding mutations within the NR2 subunits NR2A(N0Q or N + 1Q) reduced the block by 5-HT to a lesser extent. This is in contrast to the block produced by external Mg2+ where a substitution at the NR2A(N0) and NR2A(N + 1) sites but not at the NR1(N0) site significantly reduced Mg2+ block. Conclusion and implications: The block of NMDA receptor-channels by 5-HT depends on the NR1-subunit asparagine residue and to a lesser extent on the NR2A-subunit asparagine residues. These data suggest that the interaction of 5-HT with functionally important residues in a narrow constriction of the pore of the NMDA receptor-channel provides a significant barrier to ionic fluxes through the open channel due to energetic factors governed by chemical properties of the binding site and the electric field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATP and glutamate are fast excitatory neurotransmitters in the central nervous system acting primarily on ionotropic P2X and glutamate [N-methyl-D-aspartate (NMDA) and non-NMDA] receptors, respectively. Both neurotransmitters regulate synaptic plasticity and long-term potentiation in hippocampal neurons. NMDA receptors are responsible primarily for the modulatory action of glutamate, but the mechanism underlying the modulatory effect of ATP remains uncertain. In the present study, the effect of ATP on recombinant NR1a + 2A, NR1a + 2B, and NR1a + 2C NMDA receptors expressed in Xenopus laevis oocytes was investigated. ATP inhibited NR1a + 2A and NR1a + 2B receptor currents evoked by low concentrations of glutamate but potentiated currents evoked by saturating glutamate concentrations. In contrast, ATP potentiated NR1a + 2C receptor currents evoked by nonsaturating glutamate concentrations. ATP shifted the glutamate concentration-response curve to the right, indicating a competitive interaction at the agonist binding site. ATP inhibition and potentiation of glutamate-evoked currents was voltage-independent, indicating that ATP acts outside the membrane electric field. Other nucleotides, including ADP, GTP, CTP, and UTP, inhibited glutamate-evoked currents with different potencies, revealing that the inhibition is dependent on both the phosphate chain and nucleotide ring structure. At high concentrations, glutamate outcompetes ATP at the agonist binding site, revealing a potentiation of the current. This effect must be caused by ATP binding at a separate site, where it acts as a positive allosteric modulator of channel gating. A simple model of the NMDA receptor, with ATP acting both as a competitive antagonist at the glutamate binding site and as a positive allosteric modulator at a separate site, reproduced the main features of the data.